CHARACTERIZATION OF ABANDONED ROCKET BODY FAMILIES FOR ACTIVE REMOVAL

Carmen Pardini
ISTI – Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy, Carmen.Pardini@isti.cnr.it

Luciano Anselmo
ISTI – Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy, Luciano.Anselmo@isti.cnr.it

A new ranking index was developed and applied to a wide set of rocket body families, characterized by stage dry masses greater than 500 kg and by the presence of at least 5 stages abandoned in LEO. The upper stages selected accounted for more than 80% of the unclassified rocket bodies in LEO and nearly 95% of the associated dry mass. The detailed results obtained for 659 objects clearly identified the most critical altitude-inclination bands and stage models, to be targeted first if and when a debris remediation strategy including the active removal of intact abandoned objects were deemed necessary. Apart from the evaluation of the criticality regarding the long-term evolution of the debris environment, resulting in a priority listing for optimal active removal, the application of the new ranking index is not limited to debris remediation. In fact, if applied before launch to spacecraft and rocket bodies to be disposed in orbit, at the end of mission, it would provide an additional debris mitigation analysis tool for evaluating competing disposal options. Concerning the rocket bodies abandoned in LEO, 208 resulted to have a criticality equal or larger than the average intact object abandoned in an 800 km sun-synchronous orbit. Among them, 174 belonged to the Russian Federation and Ukraine, 28 to China, 5 to Europe and 1 to Japan. In addition to being concentrated in relatively few and narrow altitude-inclinations bands, the most numerous rocket body families often present a quite uniform distribution in right ascension of the ascending node, which is especially convenient for multiple target removal missions.

I. INTRODUCTION

Most of the cross-sectional area and mass in orbit are concentrated in intact objects, of which approximately 80% are constituted by abandoned spacecraft and rocket bodies. In Low Earth Orbit (LEO), the abandoned objects and the associated mass are not evenly distributed, but quite often concentrated in relatively narrow altitude-inclination bands (see Figures 1 and 2), where the probability of catastrophic collision is significantly above the average. (The expected total collision rate in LEO among cataloged objects is currently around 0.2 per year, about 30% of which involving collisions among intact bodies1.)

This clustering pattern frequently involves a substantial number of nearly identical objects, as upper stages of a few basic models. Therefore, even though upper stages account for about 50% of the abandoned mass in LEO, such a 50% is concentrated in a relatively small number of rocket body families2. It seems then quite reasonable that any plausible orbital debris remediation scheme, if and when deemed necessary, should start considering the active removal of abandoned mass from crowded regions, and the targeting of upper stages in particular would offer a lot of advantages, because they are usually easier and safer to grab, more robust from a structural point of view, less secretive, and have simpler and more symmetrical shapes, mass distributions, structures and rotational
motions3,4,5. In addition, the targeting of very similar objects belonging to a few types would make possible many removal missions with basically the same hardware and procedures6.

This paper characterizes the most relevant rocket body families present in LEO in terms of mass, orbit, residual lifetime and catastrophic debris collision probability. Just 9 general types of rocket bodies, contributing with at least 20 metric tons to the mass in LEO at the beginning of 2015, account for nearly 73\% of the stages and nearly 88\% of the overall mass stored in upper stages abandoned below the average altitude of 2000 km2. Through the definition of a simplified ranking scheme based on reasonable and easy to apply assumptions, the results obtained are used to evaluate and prioritize the most relevant families of objects, and the single objects belonging to each family, in order to find the most appropriate potential targets for active debris removal as a function of mass to be de-orbited, average altitude, inclination and node distribution (being the latter information of relevance for multiple removal approaches). The details provided aim to be useful for active removal mission preliminary design, dimensioning and analysis.

Among 1682 upper stages for which a state vector was available, 821, i.e. approximately 49\%, had a mean altitude \(\leq 2000 \) km. The estimated total mass was 2706 metric tons, of which 1199 metric tons, i.e. about 44\%, in LEO. The average rocket body mass was 1609 kg; for the upper stages with a mean altitude \(\leq 2000 \) km, the average mass was 1460 kg. Figures 3 and 4 detail the geopolitical distribution of the upper stages in terms of number and mass, respectively. The situation in LEO is further expanded in Figures 5 and 6.

A full census of the unclassified rocket bodies in orbit, as of January 7, 2015, was presented elsewhere2. Among 1682 upper stages for which a state vector was available, 821, i.e. approximately 49\%, had a mean altitude \(\leq 2000 \) km. The estimated total mass was 2706 metric tons, of which 1199 metric tons, i.e. about 44\%, in LEO. The average rocket body mass was 1609 kg; for the upper stages with a mean altitude \(\leq 2000 \) km, the average mass was 1460 kg. Figures 3 and 4 detail the geopolitical distribution of the upper stages in terms of number and mass, respectively. The situation in LEO is further expanded in Figures 5 and 6.

II. ROCKET BODIES IN ORBIT

A full census of the unclassified rocket bodies in orbit, as of January 7, 2015, was presented elsewhere2.

In terms of upper stages mass abandoned in orbit
around the Earth, the Russian Federation and Ukraine, taken together, account for 68% of the total, the United States for 12%, Europe for 10%, China for 7%, Japan for 2% and India for 1% (Figure 4). Focusing the attention in LEO, the Russian Federation and Ukraine lead is still more prominent, with 76% of the total, followed by China with 12%, the United States with 7%, Japan and Europe with 2%, and India with 1% (Figures 4 and 6).

Concerning the types, dry masses and orbital distributions of the unclassified upper stages present in orbit at the beginning of 2015, further details are provided in Figures 7 and 8 for the Russian Federation and Ukraine, in Figures 9 and 10 for Europe, in Figures 11 and 12 for China, in Figures 13 and 14 for Japan, and in Figures 15 and 16 for the United States. Regarding India, 21 out of 22 rocket bodies in orbit, of which 15 out of 16 in LEO, were fourth stages of the PSLV launcher, with a dry mass of 920 kg.

Fig. 8: Distribution among rocket types and orbital regimes of the upper stages launched by the Russian Federation and Ukraine.

Fig. 9: Dry masses of the upper stages launched by Europe.

Fig. 10: Distribution among rocket types and orbital regimes of the upper stages launched by Europe.

Fig. 11: Dry masses of the upper stages launched by China.

Fig. 12: Distribution among rocket types and orbital regimes of the upper stages launched by China.

Fig. 13: Dry masses of the upper stages launched by Japan.
III. ROCKET BODIES IN LEO CONSIDERED IN THE RANKING ANALYSIS

In this paper, the rocket body families analyzed were those characterized by a stage dry mass > 500 kg and by the presence of ≥ 5 stages abandoned in LEO. They are listed in Table 1 and represented more than 80% of the unclassified rocket bodies in LEO (659 out of 821) and nearly 95% of the associated dry mass (1136 out of 1199 metric tons), as of January 7, 2015. The corresponding geopolitical distribution, in terms of mass, is summarized in Figure 17. Nearly 79% of the ranked rocket body mass belonged to the Russian Federation and Ukraine, 12% to China, 5% to the United States, and the remaining 4% to Japan, Europe and India.

Fig. 14: Distribution among rocket types and orbital regimes of the upper stages launched by Japan.

Fig. 15: Dry masses of the upper stages launched by the United States.

Fig. 16: Distribution among rocket types and orbital regimes of the upper stages launched by the United States.
Table 1: Rocket bodies in LEO considered in the ranking analysis.

<table>
<thead>
<tr>
<th>ROCKET BODY</th>
<th>DRY MASS [kg]</th>
<th>STAGE</th>
<th>NUMBER OF STAGES IN LEO</th>
<th>TOTAL MASS OF THE STAGES IN LEO [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUSSIAN FEDERATION & UKRAINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-3 VOSTOK</td>
<td>1100</td>
<td>Stage 2</td>
<td>53</td>
<td>58,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vostok 8A92-M-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-8 KOSMOS</td>
<td>1435</td>
<td>Stage 2</td>
<td>290</td>
<td>416,150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 Kosmos-1 & 288 Kosmos-3M 11K65M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-14 TSYKLON-3</td>
<td>1407</td>
<td>Stage 3</td>
<td>110</td>
<td>154,770</td>
</tr>
<tr>
<td>SL-16 ZENIT-2</td>
<td>9000</td>
<td>Stage 2</td>
<td>22</td>
<td>198,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zenit-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-19 ROKOT</td>
<td>1600</td>
<td>Stage 3</td>
<td>8</td>
<td>12,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rokot-3 Briz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL-24 DNEPR-1</td>
<td>2360</td>
<td>Stage 3</td>
<td>16</td>
<td>37,760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dnepr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIZ</td>
<td>2390</td>
<td>Briz-M upper stage</td>
<td>7</td>
<td>16,730</td>
</tr>
<tr>
<td>TOTAL NUMBER AND MASS</td>
<td></td>
<td></td>
<td>506</td>
<td>894,510</td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIANE 40 & 42P</td>
<td>1800</td>
<td>Stage 3 H10</td>
<td>8</td>
<td>14,400</td>
</tr>
<tr>
<td>UNITED STATES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELTA 1</td>
<td>785 (DELTA-E) 784 (DELTA-F) 820 (DELTA-P) 950 (DELTA-K)</td>
<td>Stage 2 3 DELTA-E 5 DELTA-F 20 DELTA-P 1 DELTA-K</td>
<td>29</td>
<td>23,625</td>
</tr>
<tr>
<td>DELTA 2</td>
<td>950</td>
<td>Stage 2 DELTA-K</td>
<td>25</td>
<td>23,750</td>
</tr>
<tr>
<td>THOR ABLESTAR</td>
<td>590</td>
<td>Stage 2 Able-Star</td>
<td>12</td>
<td>7080</td>
</tr>
<tr>
<td>THOR & THORAD AGENA D</td>
<td>673</td>
<td>Stage 2 Agena-D</td>
<td>8 (5 THOR & 3 THORAD)</td>
<td>5384</td>
</tr>
<tr>
<td>TOTAL NUMBER AND MASS</td>
<td></td>
<td></td>
<td>74</td>
<td>59,839</td>
</tr>
<tr>
<td>CHINA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ-2C</td>
<td>4000</td>
<td>Stage 2</td>
<td>13</td>
<td>52,000</td>
</tr>
<tr>
<td>CZ-2D</td>
<td>4000</td>
<td>Stage 2</td>
<td>5</td>
<td>20,000</td>
</tr>
<tr>
<td>CZ-4</td>
<td>2000</td>
<td>Stage 3</td>
<td>7</td>
<td>14,000</td>
</tr>
<tr>
<td>CZ-4B</td>
<td>2000</td>
<td>Stage 3</td>
<td>12</td>
<td>24,000</td>
</tr>
<tr>
<td>CZ-4C</td>
<td>2000</td>
<td>Stage 3</td>
<td>14</td>
<td>28,000</td>
</tr>
<tr>
<td>TOTAL NUMBER AND MASS</td>
<td></td>
<td></td>
<td>51</td>
<td>138,000</td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-2A</td>
<td>3000</td>
<td>Stage 2</td>
<td>5</td>
<td>15,000</td>
</tr>
<tr>
<td>INDIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSLV</td>
<td>920</td>
<td>Stage 4</td>
<td>15</td>
<td>13,800</td>
</tr>
<tr>
<td>OVERALL NUMBER AND MASS IN LEO</td>
<td></td>
<td></td>
<td>659</td>
<td>1,135,549</td>
</tr>
</tbody>
</table>

IV. RANKING UPPER STAGES FOR ENVIRONMENTAL CRITICALITY AND ACTIVE REMOVAL

In recent years, a growing popular way to evaluate the latent long-term environmental impact of orbiting objects, avoiding thousands of complex simulations based on quite uncertain assumptions, was the recourse to ranking schemes based on reasonable hypotheses and simplifications. In this study, the task of ranking a broad and representative selection of rocket bodies in LEO, with the goal of evaluating their potential detrimental effects on the debris environment and the relative benefit of having them actively de-orbited, was tackled by applying a new ranking scheme, introduced in a recent paper, further developing and...
simplifying an approach elaborated by the authors during the last few years6,11,14.

In principle, the proposed ranking index could be used for any object in LEO (abandoned spacecraft included) and would be able to sort out the targets potentially most critical for the future preservation of the LEO protected region16, but its application to rocket bodies, i.e. to a few relatively homogeneous families of objects, is much more straightforward, reliable and meaningful, as will result clear in the following, after the presentation of the index and the discussion of the results obtained.

IV.I Ranking Index Definition

In order to characterize the potential long-term adverse effects, on the LEO debris environment, of an abandoned object, the associated criticality ranking index R, where a higher index value is associated with a higher potential threat, should depend on the probability of catastrophic breakup P_c due to space debris collision during the object’s orbital lifetime, on the number of new “effective projectiles” N_p possibly resulting from a breakup, and on the environmental impact over the long-term of the consequent debris cloud11,14.

Being $F(t)$ the flux of orbital debris able to significantly breakup a target intact object, A the average collisional cross-section of the latter and t the time, the probability of target fragmentation can be approximated by the following relationship, taking into account that $P_c < 0.1$ and that the cross-section of typical debris impactors is 2–4 orders of magnitude smaller than A for intact objects:

$$P_c \approx \int F(t) \cdot A \cdot dt \, .$$ \hspace{1cm} \text{(1)}

Taking into account that the time evolution of $F(t)$ is affected by significant uncertainties17 and that the estimate of the integral in Eq. (1) for each specific target object would be cumbersome, it was chosen to include in the ranking scheme just the current flux F_{cat} of cataloged debris, in order to maintain the index as simple and manageable as possible. It was then feasible to streamline Eq. (1) as follows:

$$P_c - F_{cat} \cdot A \cdot L_T \, ,$$ \hspace{1cm} \text{(2)}

where L_T is the target object residual lifetime, which, for nearly circular orbits, the large majority in LEO, can be expressed as:

$$L_T \equiv l(h) \cdot \frac{M}{A} \, ,$$ \hspace{1cm} \text{(3)}

being M/A the body mass-to-area ratio, h its mean altitude and $l(h)$ a “normalized” average lifetime function1,14, which was estimated for the average intact object in LEO in 20131,4 with $M_0 = 934$ kg and $A_0 = 11$ m2, i.e. $A_0/M_0 = 0.012$ m2/kg. Eq. (2) then becomes:

$$P_c - F_{cat} \cdot l(h) \cdot M \, .$$ \hspace{1cm} \text{(4)}

Looking at the fragments potentially generated by a catastrophic breakup, their cumulative number N_p, larger than a given characteristic size, can be roughly estimated with the NASA standard breakup model18,19. N_p is proportional to the cumulative mass of the target object and impacting debris, raised to the 0.75th power. However, the cumulative mass is often very close to the target mass, the latter typically much larger (by 2–3 orders of magnitude in LEO) than the impactor’s one. As a result, $N_p \propto M^{0.75}$, leading to the following definition of the criticality ranking index R:

$$R \propto P_c \cdot N_p \propto P_c \cdot M^{0.75} - F_{cat} \cdot l(h) \cdot M^{1.75} \, .$$ \hspace{1cm} \text{(5)}

Other factors to be possibly incorporated in Eq. (5) were previously investigated1,14, aiming at the characterization of the long-term impact on the environment of the resulting debris cloud, but the added complication, coupled with the inherent uncertainties and the generally limited numerical impact of such improvements, led to the choice of adopting, for the analysis presented in this paper, the definition given in Eq. (5). As a matter of fact, also because most of the intact objects and debris in LEO are characterized by medium or high orbital inclinations, and this is still truer for the rocket bodies listed in Table 1, Eq. (5) already incorporates most of the story regarding the potential criticality of the target objects analyzed in the present study.

IV.II Normalized and Dimensionless Ranking Index

Starting from Eq. (5) and adopting as measurement
unit the above mentioned average intact object in LEO in 2013\(^4\), placed into a sun-synchronous orbit with a mean altitude \(h_0 = 800\) km and with an associated inclination \(i_0 = 98.5^\circ\), a normalized and dimensionless ranking index \(R_N\) can be defined as follows:

\[
R_N \equiv \frac{F_{\text{cat}}(h)}{F_{\text{cat}}(h_0)} \left(\frac{M}{M_0} \right)^{1.75},
\]

where \(F_{\text{cat}}\) is the flux of cataloged debris on the reference object and \(l(h)/l(h_0) \equiv 1\) when \(h > h_0\). The latter cut off, set at an orbital lifetime of approximately 200 years, was introduced to avoid weighting too much objects with very long residual lifetimes, much longer than any reasonable temporal horizon for the current modeling and technology projections. A smaller lifetime cut off, around 100 years, could have been just as appropriate, but the former choice was dictated by the fact that many of the current debris modeling projections are ran over two centuries.

As already emphasized in previous papers\(^2,4,11,14\), the intuitive meaning of a ranking index defined in this way is easy to grasp, being \(R_N\) referred to an average intact object in LEO placed in the most popular orbital regime, the sun-synchronous one. The index value found for a specific object should therefore proportionally weight its latent detrimental effects on the long-term debris environment compared with those of the reference body.

This was, in fact, the goal of the original index definition presented in previous studies\(^11,14\), where the debris flux considered in Eq. (2) and following was also a function of the intact target mass, in order to take into account the fact that a catastrophic breakup would occur only above a certain specific energy threshold\(^1\). The adoption of the flux of cataloged objects, irrespective of the target mass, as done here for building a more simple and easier to manage index, would therefore have the effect of overestimating the ranking index of the objects more massive than the reference one \((M_0 = 934\) kg) and underestimating the index of the lesser massive bodies.

However, even for the most massive upper stages considered \((M = 9000\) kg), the expected overestimation for having used the cataloged debris flux in the ranking index definition would be less than a factor of 2 (i.e. < 0.3 in logarithmic terms), and for smaller masses the enhancing would rapidly decrease \((< 50\% \text{ for } 4000\text{ kg}, < 20\% \text{ for } 2000\text{ kg}, \text{ and } < 10\% \text{ for } 1500\text{ kg})\). Concerning the least massive upper stages analyzed \((M = 590\) kg), the expected underestimation would be < 20\%, (i.e. < 0.1 in logarithmic terms). If these numbers are compared with the intrinsic complexity and all the uncertainties underlying the current and future debris environment\(^17\), including the concept itself of catastrophic collision\(^1\), the simplified approach used in this paper seems reasonable and appropriate. Moreover, the relative ranking indexes among similar intact bodies, belonging to homogeneous classes of objects with nearly the same mass, as the families of upper stages analyzed in this paper, are not affected at all by the choice adopted. Any bias, if present, would only appear when comparing the ranking indexes of heterogeneous objects of quite different masses.

IV. III Logarithmic Ranking Index

Even though \(R_N\) has a quite straightforward meaning, its values may span a range of several orders of magnitude, so a logarithmic index \(R_{NL}\) might be often more practical for summarizing the results. It was defined in the following way:

\[
R_{NL} = \log_{10}(R_N) + 1.
\]

This choice assures that \(R_{NL} = R_N = 1\) for the reference body, and \(R_{NL} \geq 0\) when \(R_N \geq 0.1\), i.e. 1/10 of the ranking index for the reference body. In other words, the targets deserving more attention, from a debris remediation point of view, are characterized by \(R_{NL}\) around 1 or larger, having a current environment criticality around the average or greater. The old abandoned objects for which \(R_{NL} < 0\), i.e. with \(M < 250\) kg in a sun-synchronous orbit at 800 km, on the other hand, are not enough critical for the future evolution of the environment to merit a high removal priority.

It should be, however, emphasized, that these arguments apply to an optimized step-by-step remediation of the situation created in the past, assuming for future launches and missions the strict application of mitigation guidelines\(^16\). The latter, in order to prevent a further growth of massive “projectiles” leading to an increase of the collision probability, should avoid the long-term presence in LEO of any new uncontrolled object, either intact or sizable debris, even with \(M < 250\) kg, where the acceptable “long-term presence” could be a few decades or even less.

V. Rocket Bodies Criticality in LEO

The ranking scheme developed and presented in the previous sections was applied to the families of upper stages in LEO listed in Table I and described in Section III. As already pointed out, they accounted for more than 80\% of the unclassified rocket bodies and nearly 95\% of the associated dry mass, as of January 7, 2015. Figure 18 shows the average ranking index found for the upper stages of each launcher included in the analysis. The dominance of the second stage of the Zenit-2 launcher, with an average ranking index much greater than 10, is undisputed, even taking into account the caveats illustrated in Section IV.II, due to the combination of rocket body mass and disposal orbits. On the other hand, for all the other rocket body families,
the distribution of average ranking indexes is relatively compressed, with one family (CZ-2 second stage) between 2 and 3, four families (Dnepr-1 third stage, H-2A second stage, Ariane 4 third stage and CZ-4 third stage) between 1 and 2, four families (Kosmos second stage, Vostok second stage, Briz-M upper stage and Rokot third stage) between 0.5 and 1, and 6 families below 0.5. This grouping is substantially confirmed even looking at the rocket bodies presenting the maximum ranking index in each launcher family (Figure 19).

However, the average and maximum values of the ranking index are not enough to have a clear picture of the situation in orbit, because how much a family is numerous is important as well, or even more. In fact, as shown in Figure 20, even though the Kosmos second stages have an average ranking index of 0.8, there are 108 of them with $R_N \geq 1$, followed by 23 Vostok second stages, 22 Zenit-2 second stages, 18 CZ-4 third stages, 14 Dnepr-1 third stages and 10 CZ-2 second stages. Looking at the rocket bodies with $R_N \geq 2$, following the 22 Zenit-2 second stages, there are 10 Dnepr-1 third stages, 7 CZ-4 third stages and 6 CZ-2 second stages.
The detailed results obtained for the upper stages of the Russian and Ukrainian launchers are summarized in Figures 21 (orbital distribution), 22 (ranking index) and 23 (logarithmic ranking index). The rocket bodies are mostly grouped in a few and narrow inclination bands (Figure 21). Those for which $R_N \geq 0.1$ were found between 600 and 1800 km, and belonged to all the families (Figure 22). Those for which $R_N \geq 1$ were found between 600 and 1500 km, between 600 and 1100 km those for which $R_N \geq 2$.

In addition to being concentrated in relatively few and narrow inclinations bands, the most numerous rocket body families also present a significant altitude-inclination clustering (see, for example, Figures 24, 25, 26 and 27) and, in certain cases, an additional thick and quite uniform distribution in Right Ascension of the Ascending Node (RAAN). This situation, particularly advantageous for multiple target removal missions\(^6\), is especially evident for the Kosmos second stages, and will not be affected by the overall orbit evolution of the rocket bodies (Figure 24). To a lesser extent, this was also found for other rocket body families, for example the Tsyklon-3 third stages (Figure 25), the Vostok second stages (Figure 26) and the Zenit-2 second stages (Figure 27).
The detailed results obtained for the rocket bodies associated with the American launchers are shown in Figures 28 (orbital distribution), 29 (ranking index) and 30 (logarithmic ranking index). Compared with the Russian and Ukrainian ones, the American upper stages present a larger inclination dispersion, but some groupings are discernible as well (Figure 28). The stages for which $R_N \geq 0.1$ were found between 700 and 1800 km, and belonged to all the families (Figure 29). However, no stage was found with $R_N \geq 1$, and the six with $0.5 < R_N < 1$ were lying between 750 and 900 km.

The detailed results obtained for the upper stages of the Asian and European launchers are presented in Figures 31 (orbital distribution), 32 (ranking index) and 33 (logarithmic ranking index). The only significant grouping in inclination was found in correspondence with the sun-synchronous values (Figure 31). The rocket bodies for which $R_N \geq 0.1$ were found between 500 and 1400 km, and belonged to all the families considered in the analysis (Figure 32). Those for which $R_N \geq 1$ were concentrated between 600 and 1100 km, leaving out the PSLV fourth stages. Each remaining family exhibited also some rocket bodies with $R_N \geq 2$ (Figure 20), concentrated between 650 and 900 km (Figure 32), while three CZ-2 second stages, found between 800 and 830 km, displayed a ranking index around 10.

VI. CONCLUSIONS

In order to evaluate the intrinsic criticality, for the long-term evolution of the orbital debris environment, and the potential relative effectiveness of active removal, a new simplified ranking index was developed and applied to a wide set of rocket body families. They represented more than 80% of the unclassified rocket bodies in LEO and nearly 95% of the associated dry mass. The detailed results obtained for several hundred of upper stages clearly identified the most critical altitude-inclination bands and object types, to be addressed first if and when a debris remediation strategy including the active removal of abandoned mass from crowded regions were deemed necessary.

However, the usefulness of the ranking index presented and applied in this paper is not limited to debris remediation. In fact, the pre-launch application of the ranking scheme to spacecraft and rocket bodies to be disposed in orbit, after the end of the mission, would offer an additional easy to implement and apply tool for evaluating the relative advantages and disadvantages of competing disposal options. The new index may therefore benefit debris mitigation as well.

VII. REFERENCES

