Model Checking of Embedded Systems

by Stefania Gnesi

The integration of different dependability techniques is an open resea
We address problems that arise when attempting to combine fault tol
mechanisms with formal methods and formal verification tools in the
an embedded system.

In recent years, the wide spread deployment of embedded systems on whi
activities depend has raised many concerns about safety issues. A combin
prevention, fault tolerance, fault removal and fault forecasting techniques
used in order to achieve a high degree of dependability. However, there is
agreement on a standard method to combine and integrate individual tech
example, industries with different backgrounds and application fields tend
to own particular development trajectories when applying techniques aimed
dependability.

The application of formal methods in the rigorous definition and analysis
functionality and the behaviour of a system means that the system is desi
g to a set of predefined abstract properties that guarantee its 'correct' behav
astonishing to see how seldom formal methods are actually used by the sa
system industry, despite the fact that their adoption is increasingly require
international standards and guidelines for the development of such system
that industrial acceptance of formal methods is strictly related to the inves
introduce them, to the maturity of the tool support available, and to the ea
these reasons, the current industrial trend is to adopt formal verification te
validate system design and integration within the existing development pr
prefer to use formal verification techniques assessing the quality attribute
products, obtained by a traditional life cycle, rather than adopting a fully f
development, simply because it is cheaper to do so.

Several approaches to the application of formal methods in the developm,
been proposed; they mainly differ with respect to the degree of involveme
method. Starting from rigorous specifications, formal methods can be use
\orphism of test cases, as a validation technique aimed at proving that th
satisfies the requirements, or just as an auxiliary technique in the automa
code.

Formal verification methods based on model checking are applied on a fir
representation of system behaviour. Verification is usually carried out by
checking algorithms to demonstrate the satisfiability of certain properties
logical formulae over the model of the system. For example, safety and li
requirements can be expressed as temporal logic formulae and can be che
model of the system. Unfortunately, this approach suffers from the so-called Explosion' problem that can arise when a system is composed of several subsystems, a finite state model with a number of states, which is exponentially the number of the component subsystems, can be generated. Systems that are highly dependent data values share the same problem, producing a number of states exponential to the number of data variables. Hence, traditional model checking techniques have been insufficiently powerful for many 'real' systems, when their models are large state spaces.

Recent advances in model checking techniques, however, have managed to tackle large state spaces by using symbolic manipulation algorithms inside model checking tools have been successfully applied to very large state spaces in the realm of software verification.

Embedded computer-controlled systems often include fault tolerance techniques. Fault tolerance is the property of a system to provide, through redundancy, a set of system that complies with the specification despite the occurrence of faults. The rigorous and verification of this class of systems is extremely important since it makes clear to demonstrate that a system is correct even in the presence of faults and failures.

We have applied model checking verification techniques to embedded systems to demonstrate how certain characteristics of embedded systems, such as the use of redundancy to reduce the state space explosion problem. In this work, we have considered two interesting examples: the verification of the safety requirement of the Railway Interlocking System developed by Ansaldo Trasporti and the verification of fault tolerant mechanisms defined inside the EU project GUARDS (Generic Dependable Systems).

Both studies have shown that:

- the application of model checking formal verification methodology is well accepted in the industrial context of embedded fault tolerant systems;
- the formalization process strictly depends on the application domain; rules for the passage from the semi-formal description of the system specification can be successfully applied to the field of embedded fault tolerant systems. This passage is generally recognized as one of the critical steps in the verification process;
- the reduction in the state space due to the phased structure of redundancy.
makes the model checking approach viable in this application domain.

- the use of finite state machines as the specification language has the
 advantage of ensuring the adherence of the formal specification to the original
 system.

Link:
http://matrix.iei.pi.cnr.it/FMT/

Please contact:
Stefania Gnesi, ISTI-CNR
Tel: +39 050 3152918
E-mail: gnesi@iei.pi.cnr.it

Survey:
Please click the button if you find this article interesting:
[Yes!](#)
[See the results without recommending this article.](#)