Autonomous selection of the “what” and the “how” of learning: an intrinsically motivated system tested with a two armed robot

Vieri G. Santucci

Ist. di Scienze e Tecnologie della Cognizione (ISTC)
Consiglio Nazionale delle Ricerche (CNR)
Via San Martino della Battaglia 44, 00185 Roma, Italia
School of Computing and Mathematics
University of Plymouth
Plymouth PL4 8AA, United Kingdom
vieri.santucci@istc.cnr.it

Gianluca Baldassarre and Marco Mirolli

Ist. di Scienze e Tecnologie della Cognizione (ISTC)
Consiglio Nazionale delle Ricerche (CNR)
Via San Martino della Battaglia 44, 00185 Roma, Italia
{marco.mirolli,gianluca.baldassarre}@istc.cnr.it

Abstract—In our previous research we focused on the role of Intrinsically motivated learning signals in driving the selection and learning of different skills. This work makes a further step towards more autonomous and versatile robots, implementing a 3-level hierarchical architecture with the mechanisms necessary to both select goals to pursue and search for the best way to achieve them. In particular, we focus on the important problem of providing artificial agents with a decoupled architecture that separates the selection of goals from the selection of resources. To verify our solution, we use the architecture to control the two redundant arms of a simulated iCub robotic platform tested in a reaching task within a 3D environment. We compare its performance to a previous model having a coupled architecture where the different goals are associated at design-time to different modules pursuing them.

I. INTRODUCTION

Developing artificial agents able to autonomously discover, select and solve multiple new tasks is an important issue for robotics. This becomes even crucial if we want robots to interact with real environments where they have to face many unpredictable problems and where it is not clear which skills will be the more suitable to solve them.

Intrinsic motivations (IMs) identify the ability of humans and other mammals (e.g. rats and monkeys) to modify their behaviour and learn new skills in the absence of a direct biological pressure. First studied in animal psychology (e.g. [1] [2]) and human psychology (e.g. [3] [4]), recently IMs have been investigated also with respect to their neural basis, with both experiments (e.g. [5] [6]) and computational models (e.g. [7] [8]).

IM learning signals can be considered a useful tool to implement more autonomous and versatile robots, driving the formation of ample repertoires of skills without the need for the user to externally assign a reward or a task to them. In the last decades much computational research based on IMs have been proposed (e.g. [9] [10] [11] [12] [13] [14]) and nowadays IMs are an important field of research also within robotics [15].

In particular, IMs can play an important role in guiding an artificial system to select its own goals: when many different skills can be acquired, it is crucial for the system to properly select only those that can be learnt and to focus on them only for the the time necessary to learn them. In a previous work [16] we analysed which IM signal is more suitable to drive the selection and learning of multiple skills in a robotic system implemented with a hierarchical architecture. We compared different signals taken from the computational literature and we found that the best signals were based on the prediction error (PE), or prediction error improvement (PEI), of a predictor of the competence of the system in achieving the goals. These results underlined the role of goals in improving robotic learning processes [17] [18] [13] and the importance of using competence-based IM (CB-IMs) instead of knowledge-based IM (KB-IMs) learning signals to optimise the acquisition of a repertoire of skills (on the difference between CB-IMs and KB-IMs see [19] [20]).

In [16] we used a simple robotic setup, involving a 2 degrees-of-freedom (2DoF) robotic arm, tested in a 2D environment. Moreover, the architecture presented a significant limitation: a fixed coupling between the goals and the “experts” (reinforcement learning modules, each sufficient to learn to accomplish one goal) pursuing them, so that the system was forced to use a specific expert to learn a specific task. This can be a problem when the available experts can vary in terms of input, internal structure or output (e.g. controlling different effectors). This is even more evident in real world scenarios where it is impossible to determine at design time which is the best computational resource to accomplish a goal.

Here we implement a more complex experimental setup, using the two redundant arms of a simulated iCub robotic platform tested in a reaching experiment within a 3D environment. We then focus on tackling the limitation of our previous architecture, implementing the same CB-IM signal.
identified in [16] in a new 3-level hierarchical architecture that guarantees a decoupling between selected goals and experts. The system is so able to autonomously chose with which expert (and hence effector) acquiring the skills suitable to accomplish the different goals. Together with the capacity to autonomously select its own goals, such a decoupling is able to enhance the flexibility of artificial systems and in particular their capacity to learn multiple skills in realistic environments.

To test our solution, we compare the new system to one with fixed connections between goals and experts (as the system in [16]) showing and analysing their performances in a reaching task where it is not clear which is the most suitable arm to reach for the different objects.

II. Setup

A. The simulated robot and the experimental setup

The robot is a reproduction of the iCub robotic platform, implemented with the FARSA simulator [21] developed in our institute (http://laral.istc.cnr.it/farsa). In the experiments presented here we only use the two arms of the robot with 4 redundant DoF (the joints of the wrist and those of the fingers are kept fixed) in kinematic modality, so that collisions (that are not necessary for this test) are not taken into considerations. The fingers of the two hands are all closed with the exception of the two forefingers that are kept straight (Fig. 1).

The task consists in learning to reach with the fingertip of the forefingers 4 fixed spherical objects (with radius set to 4 cm) positioned in the workspace of the two arms of the robot. Since we want to test the importance for an artificial system to autonomously search for the best solutions for the goals, the objects are all close to the Y axis that divides the workspace of the arms in left and right. The objects are all reachable using both arms of the robot, however it is not evident a priori which is the best solution, i.e. which arm to use to reduce the time spent in learning to reach each different object.

B. Architecture and coding

Since we want the robot to learn different skills and store them in its repertoire of actions, we use a hierarchical architecture where different abilities are stored in different components (the experts) of the system [22]. In our previous work, the system presented a 2-level hierarchical architecture, with a goal selector determining on which goal the robot focused on each trial and different experts learning and storing the different skills. However, in that architecture the experts were coupled with the different goals at design-time, so that selecting a goal determined also with which expert the system tried to achieve it. This was a great limitation since a truly autonomous agent has to be able to select not only its goals but also how to achieve them. This is crucial because it is not possible to establish a priori the expert that is the proper one to learn a specific skill. For example, in the task presented here, it is not possible to determine which is the best arm to reach an object only on the basis of its position. In this sense, we define as a “coupled system” (CS) an architecture that, similarly to our previous work, has fixed connections between goals and experts used to achieve them, while we define as a “decoupled system” (DS) an architecture that is able to autonomously select both its goals and how to accomplish them (i.e. the expert controlling the robot effectors).

To verify the importance of such a decoupled architecture to foster the autonomy and flexibility of artificial agents, in the present work we implement a DS with 3 levels (Fig. 2): 1) a high-level selector that determines which goal to pursue (here the object that the robot is trying to reach); 2) a low-level selector that determines which expert controls the robot, hence the arm used to reach the goal and learn the related skill; 3) a control layer of n experts, half controlling the right arm half controlling the left arm.

The goal selector is composed of 4 units, one for each possible goal (the 4 spheres). At the beginning of every trial, it determines through a winner-takes-all (WTA) softmax selection rule [23] which goal to pursue. The probability of unit k to be selected (p_k) is thus:

$$p_k = \frac{\exp(\frac{Q_k}{\tau})}{\sum_{i=0}^{n} \exp(\frac{Q_i}{\tau})} \quad (1)$$

where Q_k is the value of unit k and τ is the temperature parameter, set to 0.008, which regulates the stocasticity of the selection. The value of each unit at time t (Q_k^t) is determined by an exponential moving average (EMA) of the intrinsic reinforcement (ir) for obtaining that goal:

$$Q_k^t = Q^t - 1_k + \alpha (ir - Q^t - 1_k) \quad (2)$$

where α a smoothing factor set to 0.35. For the description of the CB-IM mechanism generating the IM reinforcement signal, see Sec. II-C.

The selector of the experts is formed by n units, one for each expert, fully connected with the units of the goal selector. At the beginning of every trial this selector receives as input the information on which goal has been selected by
the goal selector (encoded in a 4-elements binary vector) and determines the expert (and hence the arm) controlled by the system during the trial through a WTA softmax selection rule (Eq. 1) with temperature set to 0.05. The activity of each unit is determined by the weight connecting that unit with the one of the selected goal. At each trial, the weight is updated through an EMA similar to Eq. 2 (with smoothing factor set to 0.35) of the reward obtained to achieve the selected goal (1 for success, 0 otherwise).

Each expert is a neural network implementation of the actor-critic architecture [24] adapted to work with continuous state and action spaces [25]. The input to each expert consists in the 4 actuated joints of the related arm (3 joints for the shoulder, 1 for the elbow), α β γ δ (all within the ranges of the real robot), coded through Gaussian radial basis functions (RBF) [26] in a 4 dimensional grid having 5 units per dimension.

The evaluation of the critic (V) of each expert is computed as a linear combination of the weighted sum of the input units plus a bias unit with fixed input set to 1. The actor of each expert has 4 output units, fully connected with the input, with a logistic transfer function:

\[o_j = \Phi \left(b_j + \sum_{i} w_{ji} a_i \right) \]

where \(b_j \) is the bias of output unit \(j \), \(N \) is the number of input units, \(a_i \) is the activation of input unit \(i \) and \(w_{ji} \) is the weight of the connection linking unit \(i \) to unit \(j \). Each motor command \(o^m_j \) is determined by adding noise to the activation of the relative output \(o_j \). Since the controller of the robot modifies the velocity of the joints progressively, a simple random noise would turn out to determine extremely little movements. For this reason, similarly to [25], we generate the noise (\(n \)) with a normal Gaussian distribution with average 0 and standard deviation (S) 2.0 and pass it through an EMA with a smoothing factor set to 0.08.

To reduce the time spent by the experts to reach the targets when their competence improves, we implemented an algorithm to let the system self-modulate the generated \(n \), changing the S for each expert with a “noise-decrease value” (\(d \)) determined by an EMA (with smoothing factor set to 0.0005) of the success of the expert in reaching the targets (1 for success, 0 otherwise). More precisely, the S for expert \(e \) at time \(t \) (\(S_{et} \)) is calculated as follow:

\[S_{et} = S(1 - d) \]

(4)

The actual motor commands are then generated as follows:

\[o^m_j = o_j + n \]

(5)

where the resulting commands are limited in [0; 1] and then remapped to the velocity range of the respective joints of the robot determining the applied velocity (\(\dot{\alpha}, \dot{\beta}, \dot{\gamma}, \dot{\delta} \)).
The experts are trained through a TD reinforcement learning algorithm. The TD-error of expert e (δ_e) is computed as:

$$\delta_e = (r^e_t + \gamma V^e_{t+1} - V^e_t)$$

where r^e_t is the reinforcement for the expert at time step t, V^e_t is the evaluation of the critic at time step t, and γ is a discount factor set to 0.99. The reinforcement is 1 when the robot touches the selected target, 0 otherwise. The connection weight w_i of the critic input unit i of the selected expert is updated as usual [23]:

$$\Delta w_i = \eta_c \delta a_i$$

where η_c is a learning rate, set to 0.02. The weights of the actor of the selected are updated as follows [27]:

$$\Delta w_{ja} = \eta_o \delta (o_j^m - o_j)(o_j(1 - o_j))a_i$$

where η_o is the learning rate, set to 0.4, $o_j^m - o_j$ is the difference between the action executed by the system (determined by adding noise) and that produced by the controller, and $o_j(1 - o_j)$ is the derivative of the logistic function.

C. CB-IM mechanism

The intrinsic reinforcement signal (ir^e_t) driving the selection of the goals is the intrinsic reinforcement generated by the CB-IM mechanism we identified in [16] as the best suitable to drive the selection of different goals and the acquisition of the related skills. In particular, ir^e_t is the prediction error improvement (PEI) of a predictor that receives the selected goal as input (encoded in a 4-elements binary vector, with 4 being the number of the goals) and produces a probability in the range [0, 1], predicting the achievement (within the time-out of the trial) of the selected goal. At time t, the PEI is calculated as the difference between the average absolute prediction errors (PEs) calculated over a period T of 40 trials:

$$PEI_t = \frac{\sum_{i=t-(2T-1)}^{t-T} |PE|_i}{T} - \frac{\sum_{i=t-(T-1)}^{t-1} |PE|_i}{T}$$

The predictor is trained through a standard delta rule using the achievement of the selected goal as teaching input (1 for success, 0 otherwise) and with a learning rate set to 0.05.

D. Compared systems and experimental settings

To test the importance for an artificial system to autonomously select and learn how to achieve different goals, we compare the presented system to one with an architecture similar to [16], where there was no decoupling between the experts and the goals. In such a CS the first and second level of the architecture explained above are flattened in a single layer, so that the unique selector selects an expert to which a goal is permanently associated at design-time (the object to be touched). All the other elements, mechanisms and parameters are identical for both architectures except for the number of experts.

Since it is possible that the best solution is to reach for every object with the same arm, the decoupled system (DS) has 8 experts, 4 controlling each arm, so that it is potentially able to learn to reach every object with a different expert of the same arm. Differently, the coupled system (CS) has only 4 experts, 2 for each arm: the goals of reaching the spheres on the right side of Y axis are associated with the experts controlling the right arm (1 each) and those on the left side with the 2 experts controlling the left arm (1 each).

The experiment lasts 20,000 trials. At the beginning of every trial the goal selector (both in DS and CS) determines which of the 4 spheres is the target. Then, in the DS the selector of the experts determines which expert (and hence which arm) will be used to learn to reach for that object, whereas in the CS the control goes to the expert (and to the arm) associated at design-time to that object. The joints of the selected arm are then randomly initialised. The trial ends when the selected goal is achieved (the robot touches the selected object) or after a time out of 800 time steps, each lasting 0.05 seconds.

III. RESULTS

The performance of the two systems in the reaching task is shown in Fig. 3 (data show the average performance of 20 replications of each experiment). As in [16], the CB-IM signal is able to drive the systems to learn all the skills related to the different goals. However, the DS learns significantly faster than the CS. If we look at the single tasks we can see that while the
DS is able to learn to reach all the 4 objects very quickly, the CS is able to rapidly learn to reach object 4 (even faster, on average, than CS, that first focuses on the other objects) while it takes more time to achieve a high performance on the other goals, especially number 1 and 3. If we analyse the results of the DS we understand the reason of this performance.

Fig. 4 summarises the solutions adopted by the DS to reach the 4 objects in the different replications of the experiment. In 3 cases (objects 1, 2 and 3) the system learns to reach the target with the opposite arm with respect to the position of the object on the Y axis (see also Fig. 1). Those 3 cases are the goals where the CS is slower than the DS. While our new system has an architecture that is able to autonomously search for the best solution to achieve the different goals, the CS is forced, by definition, to use the expert (and then the arm) associated with an object at design-time when it is extremely difficult (or even impossible, if we imagine more complex tasks) to determine the most suitable expert to learn each skill.

The DS instead is able to test the different experts and find the solution that guarantees a better performance. In Fig. 5 we show the history of experts selections related to goal 1 in a representative replication of the experiment with the DS. At the beginning, the system tries to achieve the goal with different experts controlling both the arms but, after some time, the system learns to achieve that goal by using always one of the experts controlling the left arm. Note that, in principle, a DS may suffer the problem of catastrophic interference [28] if it is not able to assign different experts to different skills: however, this does not happen in our system, which is able to efficiently learn to reach each object through a different expert (on this issue see also [29] [30] [31]).

IV. Conclusion

In this work we implemented a 3-level hierarchical architecture controlling the redundant arms of a simulated iCub robotic platform and we tested the importance to autonomously select the resources (the experts) best suited to find the solutions to achieve its autonomously-selected goals. To drive the autonomous selection of goals, we used Intrinsic Motivations (IMs) implemented through the mechanism generating the CB-IM reinforcement signal that we identified in our previous research [16]. We provided the system with a new architecture that allows the robot to autonomously select both its goals and the experts (hence the arms) to achieve it. We built an experimental setup consisting in a reaching tasks with 4 objects in a 3D environment and we compared the implemented decoupled system (DS) with a coupled system (CS) that has fixed connection between goals and experts.

The results show that the new architecture is able to select and learn the different skills. Moreover, the experiments show that the DS performs significantly better than the CS. The reason of these results lies in the different structure of the architectures of the two systems: the DS is able to discover the best expert to learn to reach for the different objects while the CS is forced to use the experts (and then the arm) associated to each goal at design-time.

This is just a simple test to show a crucial issue for real robots that have to act in complex environments: when there are many different goals that can be achieved, it is not possible to determine a priori which are the best resources to solve all the problems the robot will have to face. Improving the ability of an artificial agent not only in selecting its own goals but also in searching for the best resources to reach them is a necessary step towards more flexible and autonomous robots. The architecture we presented in this work is able to guarantee this two-level autonomy, supporting the system in exploring different goals and finding the appropriate experts to achieve them.

In future works we will test the robot with more difficult tasks and we will provide a wider range of different experts to the system. Here the robot can only choose to control one of the two arms, while a real agent can have more effectors to interact with the world. Moreover, the experts can vary also for their inputs and for their internal structure, providing in this way different solutions also with the same effector.

In future works we will also tackle a limitation that still affects the architecture: the goals that the system can set are given at the beginning of the experiment. An important step towards more versatile agents is to provide the systems with the ability to autonomously discover new goals. Some efforts
have been made in this direction in the field of hierarchical reinforcement learning but most of them (e.g. [32] [33]) focus on searching sub-goals on the basis of externally given tasks (reward function). Only few works (e.g. [34] [35] [13]) try to implement systems able to set their own goals independently from any specific task, which is the crucial condition to move towards a real open-ended autonomous development.

ACKNOWLEDGMENT

The authors want to thank Tommasino Ferrauto and Gianluca Massera for their precious help with the FARSA simulator.

This research has received funds from the European Commission under the 7th Framework Programme (FP7/2007-2013), ICT Challenge 2 “Cognitive Systems and Robotics”, project “IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots”, grant agreement no. ICT-IP-231722.

REFERENCES

Copyright ©2014 IEEE