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Executive summary

The main aim set out for Work Package 3 is the development of the theoretical foundations of novel, scalable
and spatial formal analysis techniques and the underlying theories to support the design of large scale CAS.
During the first year of the project we have developed several innovative analysis techniques that are highly
scalable. Some of these are based on mean field approximation techniques, others involve statistical model
checking. In both cases, the development of additional model reduction techniques is very important to further
improve scalability of analysis, for example to reduce the number of ordinary differential equations (ODEs)
that need to be solved or the number of populations that need to be considered. The description of the project’s
achievements concerning innovative model reduction techniques constitutes one of the two main parts of this
deliverable. In particular this first part addresses: the development of suitable behavioural equivalence relations
on ODEs to support model reduction and comparison; a method to identify and remove populations that have
no significant impact on a measure of interest; and a method based on automatic moment-closure analysis of
population CTMCs.

The second part addresses the project’s achievements concerning the development of suitable extensions
of a software product line engineering (SPLE) approach for CAS. In particular, family-based verification of
behavioural aspects of CAS has been pursued. In family-based analysis, the system model covers both be-
haviour that is common to all products of the family as well as variation points used to differentiate among
the individual products that can be derived from the family. This way, logical properties can be analysed at
the family level using variability knowledge to deduce results for products, rather than having to generate and
analyse each single product, which is often very costly and does not scale well. In this context, an SPLE mod-
elling and analysis framework has been further developed and implemented in the Variability Model Checker
VMC that provides family-based verification of qualitative state and action based properties in an on-the-fly
fashion. Furthermore, an alternative approach is presented to reason about software product lines focussing on
behavioural relations. To this aim the Variant Process Algebra VPA has been developed that has a family-based
semantics in which variants can be explicitly labelled. Several quantitative extensions of variability analysis
have been developed to handle variability in software performance models. Finally, a first proof-of-concept for
feature-oriented modular verification has been developed and, for a restricted notion of coherent branching fea-
ture bisimulation, a minimisation algorithm has been developed and its correctness has been shown, as briefly
discussed in this report.
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1 Introduction

This deliverable reports on results achieved in the context of the first phase of Task 3.2 “Abstraction Techniques
for Scalability Beyond Population Size” and Task 3.3 “Relating Local and Global System Views with Variability
Analysis”. Progress on Task 3.1 “Spatial Stochastic Logics and Scalable Verification” will be reported in a
forthcoming Internal Report that will appear in month 36.

Task 3.2 is mainly concerned with finding suitable behavioural equivalence relations based on ordinary
differential equations (ODEs). In the context of the QUANTICOL project collective adaptive systems (CAS)
are considered to consist of a large number of heterogeneous entities with decentralised control and varying
degrees of complex autonomous behaviour. There is an increasing tendency to model the behaviour of such
systems by the solution of ODEs. The idea is that such a solution can be interpreted as the deterministic (also
called fluid or mean-field) approximation1 of a continuous time Markov chain (CTMC). Such CTMCs are also
underlying process algebraic languages with Markovian semantics. ODE semantics of such languages define
the behaviour of a concurrent program as a continuous trajectory representing the ‘concentration’ of processes
in each of their local states. The solution of a set of ODEs is independent of the number of processes considered,
providing very good scalability. However, clearly the number of differential equations that need to be solved
grows linearly with the number of local states of the processes. Moreover, there may be multiple classes of
such processes. Behavioural equivalences can be used to reduce the number of differential equations that need
to be solved when analysing a system model. The main aim is to lift the notion of bisimulation to languages
with ODE semantics. A central role in this work is played by the well-known theory of ODE lumpability: the
solution to each ODE representing an equivalence class is equal at all time points to the sum of the solutions
of the ODEs of the states in that equivalence class. Such an approach can also establish a bridge between
fluid (ODE-based) semantics and hierarchical modelling of systems-of-systems. Improved scalability can also
be obtained in other ways. One approach is inspired by previous work in combustion modelling and used
to considerably reduce the running time of simulations required in statistical model-checking approaches2 by
identifying populations within the model which can be ignored or removed without having significant impact
on identified target populations. Another approach exploits an automatic moment closure approach to describe
the evolution of the first-order, the second-order, and the second-order joint moments of an arbitrary population
CTMC model. Achievements in model reduction approaches are outlined in Sect. 2 of the current deliverable.

Task 3.3 is concerned with a product line engineering view of CAS. Product line engineering is a software
engineering approach aiming at the development and maintenance of a family of software-intensive systems
by the systematic reuse of components or subsystems from related products or earlier versions of a product.
Important questions from a SPLE point of view concern the multi-objective optimisation of feature variability
models with attributes that cater for quantitative constraints like cost and customer satisfaction. Although so
far the focus in SPLE has mostly been on structural properties, in many cases feature variability has also a
behavioural component. The latter can be both qualitative in nature, for example additional features that lead to
new interactions between a user and a system – or between system components – and quantitative, for example
increased costs or improved performance of system components. A further issue in SPLE of CAS is the multi-
plicity of similar components that the overall system may consist of and the variability in this multiplicity that
may profoundly affect the performance and quality of service of the overall system. Furthermore, variability
can also be found in the parameters of the system.

The outline of the Deliverable is as follows. Section 2 presents an overview of the achievements in the
development of specific abstraction techniques to improve scalability of the analysis of population models. In
Section 3 an overview is given of the work on variability analysis for CAS.

1We refer to Section 2 of Deliverable 1.1 “Multiscale modelling informed by smart grids” for a brief introduction to mean-field and
fluid techniques.

2We refer to Section 4 of Deliverable 3.1 “Foundations of scalable verification for stochastic logics” for a brief introduction to
statistical model-checking.
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2 Abstraction Techniques for Scalability Beyond Population Size

This section presents an overview of the achievements in the development of specific abstraction techniques to
improve scalability of the analysis of population models. First we briefly recall the state of the art before the
start of the project and the objectives set for this task for the second reporting period. This is followed by an
overview of the main achievements for this task.

2.1 State of the art/baseline before start of the project

With respect to equivalence relations based on ODEs, the state of the art in the context of formal models based
on process algebra is [85], where the notion of label equivalence is presented for a fragment of PEPA with fluid
semantics. This essentially captures isomorphic sequential processes that exhibit the same ODE trajectories
when they are initialised with the same initial conditions. The relationship between formal languages and ODEs
induced by their semantics has been studied also in other contexts, with complementary approaches. In [48] a
model-order reduction technique is presented for κ [47], a rule-based language for chemical systems with mass-
action semantics representing bindings between molecules in an explicit graph-based way. The aggregation
method, called fragmentation, identifies a linear transformation of the state space yielding a subspace with a
closed dynamics, i.e., whose ODEs depend only on the variables of that subspace. This usually gives a covering
of the state space as opposed to a proper partition as in [85], since the same ODE variable may appear in more
than one aggregate.

The combination of the notion of bisimulation and ODEs has been explored also by the control theory com-
munity, most notably in the work of Pappas and co-authors (e.g., [73, 62]) and Van der Schaft [78]. However,
the setting is different. When studied for model reduction, they essentially deal with a state space represen-
tation with an explicit output map, e.g., the matrix C in the linear dynamical system ẋ = Ax+Bu, y = Cx. A
bisimulation is thus related to unobservability subspaces (cf. [73, Section 8.1] and [78, Corollary 6.4]). By
contrast, both [48] and [85] deal with nonlinear systems in the form ẋ = A(x) (with A a nonlinear vector field)
where reductions are state-space aggregations.

2.2 Objectives

With respect to equivalence relations for ODE, the main objectives set for this reporting period can be sum-
marised as follows:

1. To generalise the notions of behavioural equivalence for process algebra by allowing aggregations at
a finer granularity than whole sequential components (i.e., by relating individual states, that are the
constituents of the underlying ODE systems.)

2. To consider other ODE symmetries than label-equivalence type relations. In particular, to study ODE
counterparts of Markovian bisimulation, to identify classes of variables that can be self-consistently
written as a single macro-variable that represents their sums.

3. To go beyond the rules of synchronisation of the process algebra presented in [85], capturing for instance
semantics based on the law of mass action.

4. To relax the assumption of exactness, allowing approximate relations that provide bounds on the accuracy
of the approximation.

With respect to other approaches to improve scalability of fluid approximation of CAS, the main objectives were
to combine reduction techniques with model-checking approaches and to exploit automatic moment closure
techniques to address higher moments of population CTMC models.
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2.3 Achievements in the second reporting period

The achievements obtained during the reference period addressed in this deliverable concerning Task 3.2, from
month 7 upto month 30, are described in detail in the following publications: [24], [20], [25], [23], [16], [17],
[18], [19].

Below we provide a brief outline for each of them, grouping them by topic where this facilitates presenta-
tion.

2.3.1 Equivalence Relations Based on ODEs

Similarly to behavioural equivalences for more classical models of computation (e.g., labelled transition sys-
tems (LTS)), the main objective of developing equivalence relations for ODEs is to support model reduction
and comparison. This study has been conducted at different semantic levels, which are briefly summarised in
this paragraph.

Deliverable 1.2 discusses a result of foundational nature directly established for autonomous nonlinear ODE
systems [24]. There, the focus is on heterogeneous models, where heterogeneity is expressed in terms of classes
of ODE variables having the same dynamics structurally, but which are characterised by distinct parameters3.
The main contribution of [24] is a protocol that transforms the heterogeneous model into a homogeneous one
which can be amenable to exact aggregation. Here, for convenience we summarise these notions of exact
aggregation, which are also at the basis of the works reported in this document:

1. Uniform lumpability, a generalisation of a notion developed in [85] specifically for Markovian process
algebra: two ODE variables are uniformly lumpable whenever they have equal solutions when starting
from the same initial conditions.

2. Exact ODE lumpability, relating ODE variables whenever their aggregate dynamics (i.e., their sum), can
be written in a self-consistent way as a single variable.

Let us give an illustrative example to show these equivalences at work. Consider the ODE system

ẋ1 =−k1x1x3 ẋ2 =−k1x2x3 ẋ3 =−k2x3 (1)

where the “dot” notation indicates time derivative, and k1, k2 are constants. In this case, assuming that x1(0) =
x2(0) it can be seen that their derivatives at time t = 0 are equal. This implies that variables x1 and x2 are
uniformly lumpable, that is, x1(t) = x2(t) for all t. In this example, they are also exactly ODE lumpable.
Indeed, computing the sum of their derivatives we get:

ẋ1 + ẋ2 = ˙x1 + x2 =−k1(x1 + x2)x3

By the change of variable y = x1 + x2 we obtain a smaller ODE system which does not depend on x1 and x2:

ẏ =−k1yx3 ẋ3 =−k2x3

Thus we have that y(t) = x1(t)+x2(t) for all time points. We note that exact ODE lumpability does not require
the initial conditions to be equal, unlike uniform lumpability. On the other hand, with uniform lumpability one
can exactly recover the original model, whereas the trajectories of the exactly ODE lumped variables cannot be
recovered in general. Finally, we remark that in general the two notions of aggregation are not comparable: the
example above only shows an instance partition that happens to be both uniformly and exactly ODE lumpable.

3This work is similar in spirit to [19], where the problem of heterogeneity is considered in a qualitative setting in process algebra.
There, the contribution is a new class of behavioural equivalences, called dimming relations, which makes two processes equivalent
whenever they can match each other’s actions provided that they are in the same given partition block.
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Differential equivalences for process algebra. The theme of comparing ODEs has been lifted to a process
algebra setting, significantly extending the aforementioned work of [85].

In [20] the notion of differential bisimulation is introduced for a slight variant of the process algebra studied
in [85]. Similarly to Markovian bisimulations yielding an aggregated Markov process in the sense of the theory
of lumpability [38], differential bisimulation yields a partition of the ODEs underlying a process algebra term
in the sense of exact ODE lumpability (hence the sum of the ODE solutions of the same partition block is
equal to the solution of a single, lumped, ODE). The underlying ODE-related dynamical property captured
by this notion is different from [85]; in fact, it can be proven that the two equivalences are not comparable.
Furthermore, the conditions of label equivalence of [85] require reasoning over an uncountable state space
(the latter is basically represented by all the values that the ODE drift can take). By contrast, differential
bisimulation is defined in terms of two notions that can be verified using only syntactic checks. This enables
the adaptation to a continuous-state semantics of proof techniques and algorithms for finite, discrete-state,
labelled transition systems. In particular a polynomially efficient partition-refinement algorithm is provided to
compute the coarsest ODE aggregation of a model according to differential bisimulation.

Still in the context of process algebra, further work has been done concerning approximate aggregations,
preliminarily in [25] and subsequently revisited in [23]. Here, the significant advance is also with respect
to [85]. Nearby processes, i.e., process terms that have the same structure but may differ in their rate param-
eters are made symmetric after a perturbation of those parameters. It is proven that small perturbations yield
nearby differential trajectories. Additionally, these papers consider an extended process algebra that unifies
two synchronisation semantics that are well studied in the literature, useful for the modelling of computer sys-
tems and chemical networks, respectively. In both cases, numerical evidence shows that, in practice, many
heterogeneous processes can be aggregated with negligible errors.

Forward and backward bisimulations for chemical reaction networks. Equivalence relations are stud-
ied specifically for chemical reaction networks (CRNs) with the well-known mass-action semantics in [16].
In particular, two equivalences over species of the CRN are introduced, developed in the Larsen-Skou style
of probabilistic bisimulation, that are based on exact ODE lumpability and uniform lumpability, respectively.
More specifically, forward CRN bisimulation is shown to be a sufficient condition for exact ODE lumpability
while backward CRN bisimulation characterises uniform lumpability. To enhance the usefulness of these no-
tions, [16] presents a template partition-refinement algorithm that is parametric with respect to the equivalence
of interest, computing the coarsest refinement up to either variant in polynomial time. These equivalences can
be used as an automatic model reduction tool. Indeed, two algorithms provide the quotient CRN induced by
either bisimulation. With a prototype implementation available at sysma.imtlucca.it/crnreducer/ and
discussed in detail in Deliverable D5.2, CRN bisimulations are shown to reduce a number of case studies taken
from the literature. Specifically, they yield quotient CRNs with number of reactions and species up to four
orders of magnitude smaller than the original CRNs, leading to speed-ups in the ODE solution runtimes of up
to five orders of magnitude. In two cases, it was possible to analyse models that were otherwise intractable
due to excessive memory requirements. For instance, the ODE model in Eq. (1) is amenable to forward and
backward bisimulation because it corresponds to the CRN

X1 +X3
k1−→ /0 X2 +X3

k1−→ /0 X3
k2−→ /0

2.3.2 Combining Reduction Techniques with Model Checking

In [17], Feng and Hillston develop a technique which can be used to drastically reduce the run time of simula-
tions of population CTMC models, such as those derived from PALOMA or CARMA models. This technique,
inspired by previous work in combustion modelling [69], identifies populations within the model which can be
ignored or removed without having significant impact on identified target populations. The error relationship
between populations or agents within the system is built up using a directed graph. In the work of Lu and Law
[69], the dynamics of the system are captured by a set of ODE and the graph is built via syntactic analysis
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of these equations. However in the work of Feng and Hillston [17], the models considered have a CTMC se-
mantics and the evolution, and therefore the potential error arising from removing an agent, changes over time.
To address this challenge, Feng and Hillston build the directed graph over a number of preliminary simulation
runs, which record the average rates of interactions and derive the potential error on this basis. From these
rates the directed relation graph for error propagation is constructed, and used to prune agents from subsequent
simulation runs up to some predefined error threshold with respect to the target populations. The experimental
results show that significant speed-ups can be achieved (e.g. > 70%), even with relatively low error thresholds
such as 2.5%.

Figure 1: The percentage reduction of simulation time, agent types and transitions (y-axis) with different error
thresholds (x-axis) and different variants of the reduction algorithm [17].

We anticipate that the benefit to be gained from the approach could be particularly valuable in statistical
model checking where many thousands of simulation runs are usually required in order to check whether a
hypothesis holds. For instance, for a model of a bike-sharing system, suppose we want to check whether the
following hypothesis holds: Pr(G[0,100]0 < xb <C) ≥ 95% where xb is the number of bike agents in a station,
C is the capacity of that station. This means we require that in the first 100 time points, the probability of the
station being empty or full should be less than 5%. Thus, if we set the bike agents in that station as our target
agent type, the simulation speed can be significantly boosted by removing those agent types and transitions
that are loosely-coupled to the target agent type, as illustrated by the sample simulation runs presented in [17]
(see Fig. 1). Specifically, empirical evidence suggests that the removable agents types can be identified with
a relatively small number of simulation runs, far fewer than would generally be needed to reach the criterion
to accept or reject a hypothesis in statistical model checking. We plan to explore and exploit this promising
application of the directed graph error propagation approach to statistical model checking in future work.

2.3.3 Automatic Moment-closure Analysis of Population CTMC models

In [18], Feng, Hillston and Galpin propose an approach for automatic moment-closure analysis of population
CTMC models. The context in which the approach is developed, is PALOMA [55], but can be readily extended
to any population CTMC models. The work shows how to derive a set of coupled ODEs which describe the
evolution of the first-order, the second-order, and the second-order joint moments of an arbitrary population
CTMC model. For CAS systems, the number of agent classes is often very large, thus the number of ODEs for
the second-order joint moments can also grow very large, which may lead to a slow-down or even failure to
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numerically solve the ODEs. In order to overcome this problem, a neighbourhood relation between population
variables is formally defined to quantify the correlation between population variables. Then, the second-order
joint moment of two population variables can be approximated by the product of their first moments if the
neighbourhood relation between these two population variables is below a certain threshold. As a result, the
number of ODEs can be significantly reduced. The reduced set of moment ODEs are still unresolvable as they
contain moment variables that are higher than the second-order. In order to close the moment ODEs, a heuristic
algorithm is first applied to reduce the highest order of moment variables to the third-order by extracting a least
correlated population variable out of a moment variable that is higher than the third-order each time recursively.
When the highest order of moment variables is reduced to the third-order, the lognormal moment closure [81]
is applied to close the moment ODEs at the second-order. Thus, the set of ODEs can be numerically solved.
Finally, the applicability, accuracy and efficiency of the moment-closure analysis approach are demonstrated by
three case studies including a classic epidemic model, a wireless sensor network model and a city bike-sharing
model. The moment-closure technique has been implemented in the PALOMA Eclipse plug-in that supports
the recently proposed PALOMA process algebra [55]. Further details on the PALOMA Eclipse plug-in can be
found in Sect. 4.4 of Deliverable 5.2 “A CAS-SCEL implementation for smart-city modelling”.

2.4 Novelty and Future Work

The notions of differential bisimulation for process algebra and forward/backward bisimulation for CRNs, to-
gether with their supporting partition refinement algorithms to compute the respective largest equivalences, are
entirely novel to the best of our knowledge, as is the combination of differential inequalities and exact reduction
methods in order to perform approximate aggregations of ODE systems. A further innovative achievement is
the model reduction technique in the moment-closure analysis of population CTMC models based on neigh-
bourhood relation between population variables. A number of items for future work can be identified:

• Differential bisimulation and forward CRN bisimulation are sufficient conditions for aggregation. It
would be interesting to weaken their assumptions in order to be able to obtain coarser aggregates. For
differential bisimulation, a possible strategy would be to give up compositionality, allowing for instance
two processes not be distinguished if they perform different actions that have nonetheless the same effect
on the underlying ODE system.

• The effectiveness of the CRN bisimulations should be also evaluated on further model repositories than
those considered in [16], for instance by interfacing with the well-known SBML language (sbml.org).
CRN bisimulations work with the assumption of mass-action semantics. It would be interesting to extend
these to other popular kinetic mechanisms in systems biology, for instance Hill and Michaelis-Menten
kinetics. Even if the QUANTICOL project is not specifically focussing on applications in system biol-
ogy, some of them can be seen as instances of CAS and the results obtained appear to have interesting
applications in that area which are worth pursuing further. Furthermore, systems biology provides one
with a rich repository of realistic large-scale models (see also Deliverable 5.2) which can be used to study
the effectiveness and scalability of the proposed reduction techniques.

• Differential hulls provide satisfactory bounds for small enough degrees of heterogeneity. We will inves-
tigate other techniques to obtain tighter bounds. The developments on uncertain ODE models developed
in WP1 and reported in Deliverable D1.2 appear to be promising in this respect.

• Investigation of classical abstractions at the level of CTMC, with the aim of linking local and global
properties of systems. We plan to focus mainly on approximate lumpability relations generating time-
inhomogeneous lumped Markov Chains and on discretisations of the mean field limit, generating small
Markov Chains capturing the relevant stochastic behaviours.

• Combining reduction techniques with Fluid Model Checking. Several reduction techniques mentioned
in this section could be combined with model-checking techniques such as statistical model checking but
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also fluid and mean field model checking. It would be interesting to explore several of these possibilities
in the context of CAS.

3 Relating Local and Global System Views with Variability Analysis

3.1 State of the art/baseline before start of the project

Software Product Line Engineering (SPLE) [43, 74] is a software engineering approach that aims to develop
and maintain a family of software-intensive systems by the systematic reuse of components or subsystems
from related products or earlier versions of a product. To do so in a cost-effective manner, the engineering
process is organised so as to maximise commonalities and at the same time minimise the cost of variations
among individual products. Therefore individual products share an overall (global, collective) reference model
or architecture of the product family, but they differ with respect to specific (local) features. SPLE reduces
time-to-market, increases product quality and lowers production costs.

A feature diagram or feature model is the de facto standard variability model in SPLE [79]. A feature
characterises a stakeholder visible piece of functionality of a product or system and a feature model provides
a compact representation of all possible products of a product line or configurable system in terms of their
features (behaviour is not captured). However, there may be hundreds of features or configurable options, which
easily leads to superfluous or contradictory variability information (e.g., ‘false’ optional or ‘dead’ features).
There is a lot of work on computer-aided analyses of variability models to extract valid products and to detect
anomalies [36]. Graphically, features are nodes of a rooted tree and relations between them regulate their
presence in products (e.g., a requires constraint indicates that the presence of one feature requires that of
another, cf. Fig. 2). A product P from the SPL is identified by a non-empty subset PF of the set F of
features. Deciding whether a product satisfies a feature model can be reduced to Boolean satisfiability (SAT),
which can be effectively computed with SAT solvers [31].

The common (global) and variable (local) parts of products are thus defined in terms of features, and manag-
ing variability is about identifying the variation in a shared family model to encode exactly which combinations
of features constitute valid products. The actual configuration of products during application engineering is
then reduced to selecting desired options in the variability model. One of the aims of Task 3.3 is to study
the relationship between the micro and macro views of a CAS. Inspired by variability analysis as known from
SPLE, the idea is to define the macro view by indicating the commonalities and variability among a collection
of micro views, and to adapt established variability analysis techniques to obtain results concerning the kind of
properties that can be preserved from macro to micro view and vice versa.

The state of the art in variability modelling and analysis of software-intensive systems focussed on structural
rather than behavioural properties and constraints. It is of course important to model and analyse variability also
at the behavioural level, in order to provide a form of quality assurance. Before the beginning of QUANTICOL,
this was starting to gain popularity. A lot of research in SPLE was concerned with lifting successful modelling
languages and formal verification techniques known from single (software) system engineering, such as process
calculi — and other specification languages with a semantics in terms of Labelled Transition Systems (LTSs)
— and model checking, to SPLE [83]. The challenge is to handle the variability inherent to Software Product
Lines (SPLs), by which the number of possible products of an SPL may be exponential in the number of
features. Therefore, in variability analysis, one distinguishes product-based analyses, operating on individually
generated products or at most a subset, from family-based analyses, operating on an entire SPL at once using
variability knowledge about valid feature configurations to deduce results for products [83]. In family-based
verification, once a property is verified for a family model one knows that the result also holds for any of its
product models, without the need to explicitly verify the property over the products; this is in general more
efficient than product-based verification, in which every product thus has to be examined individually.

The most widely studied semantic models to capture in a compact way all possible operational behaviour
of the products of a product family were based on Featured Transition Systems (FTSs) and on Modal Transition
Systems (MTSs).
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Figure 2: Attributed feature model of a Bike-Sharing System BSS.

An FTS [42] is an LTS equipped with an additional feature diagram. Each transition of the LTS is labelled
by an action and, using the improved definition from [40], an associated feature expression (a Boolean formula
defined over the set of features) that needs to hold for this specific transition to be part of the executable product
behaviour. Hence an FTS models a family of LTSs, one per product, which can be obtained by projection: all
transitions whose feature expression is not satisfied by the specific product’s set of features are removed, as
well as all states and transitions that because of this become unreachable. An MTS [65, 26] is an LTS that
distinguishes between admissible (‘may’) and necessary (‘must’) transitions. Considering the may transitions
as optional and the must transitions as mandatory, an MTS can be interpreted as a family of LTSs such that
each family member corresponds to a specific selection of optional transitions. In this way, a single MTS can
model a product family since it allows a compact representation of the family’s behaviour, by means of states
and actions, shared between all products, and variation points, by means of may and must transitions, used to
differentiate among products. However, it is well-known that plain MTSs cannot capture all variability notions
known from feature models (e.g., ‘alternative’ and ‘mutually exclusive’ features) without adding additional
constraints.

Finally, once one equips features with attributes (e.g., capacity(Centre) = 15 in Fig. 2) one obtains an
attributed feature model. Think, for example, of feature attributes related to non-functional aspects like price,
weight, reliability, etc. Now a product P from the SPL is a non-empty subset PF ⊆F that moreover sat-
isfies the additional quantitative constraints over feature attributes (e.g., capacity(DockingStation)≤ 10).
Complex quantitative constraints require the use of computationally more expensive Satisfiability Modulo The-
ories (SMT) solvers like Microsoft’s Z3 [71]. While specifically modelling and analysing variability also at the
behavioural level was gaining popularity at the beginning of QUANTICOL, quantitative constraints over fea-
ture attributes were hardly taken into account, while probabilistic SPL models or performance analysis of SPL
models were not yet considered. Probabilistic modelling and performance analysis are important, though, since
they allow one to model uncertainty, failure rates and randomisation, thus permitting (quantitative) analyses
measuring quality of service, reliability or performance.
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3.2 Objectives

Task 3.3 has a number of objectives, which can be summarised as follows.

1. To obtain a better understanding of the relation (e.g., in terms of the preservation of properties) between
local (micro) and global (macro) views of a system or CAS by using the analogy with common (global)
and variable (local) features of a family of products.

2. To develop process-algebraic SPL modelling languages with a semantics that specifically allows for
family-based variability analysis (e.g., by means of model checking) and performance evaluation.

3. To explicitly consider quantitative feature constraints and probabilistic behaviour in the specification and
analysis of SPLs and CAS seen as such (e.g., in the context of bike-sharing systems).

4. To lift behavioural equivalence relations from LTSs to SPL models (e.g., FTSs) to support model reduc-
tion and comparison, as a step towards scalable model checking of behavioural SPL models.

3.3 Achievements in the second reporting period

The achievements obtained during the reference period addressed in this deliverable concerning the first phase
of Task 3.3, from month 7 upto month 30, are described in detail in the following publications: [5], [22], [3],
[21], [14], [4], [11], [12], [2], [9], [1], [10], [13], [6], [7], [8], [15]. The following sections briefly describe
these results.

Part of this work was originally planned in phase 2 of T3.3, but has been addressed a little earlier.

3.3.1 Variability from a Macro and Micro View Perspective

In [12], the full formal underpinnings of a modelling and analysis framework for the specification and verifica-
tion of variability in product families is presented. Some of its aspects were introduced before, but several new
notions are introduced, like consistent and valid product LTSs. Variability is addressed at the behavioural level
by modelling the family behaviour by means of a specific subset of MTSs, which are moreover equipped with
an additional set of logical variability constraints expressed over actions. These constraints allow the capture
of all common variability notions known from feature diagrams (which plain MTSs cannot). Steered by the
variability constraints expressed over action labels, the inclusion or exclusion of labelled transitions in an LTS
refining the MTS determines the family’s possible product behaviour (modelled as LTSs). This is formalised
as a special-purpose refinement relation for MTSs, which differs fundamentally from the classical one [26],
and it is shown how to use it for the definition and derivation of valid product behaviour starting from prod-
uct family behaviour. This special-purpose refinement relation always preserves the exact original branching
structure (upto the removal of unreachable states) of the MTS in the product LTSs, thus cutting out LTSs with
unfoldings and duplications (and with unreachable states) that are responsible for the fact that the number of
LTSs obtained by classical refinement is in general infinite. Consistency concerns the fact that a feature (i.e.,
functionality) is or is not present in a product, independently of its behavioural context. This means that when
an optional transition with a specific label is included in a product LTS, this must be done in a consistent way
for all its occurrences. A consistent product is valid if it moreover satisfies all variability constraints.

To reason about properties of MTS models, v-ACTL (a variability-aware action-based branching-time
modal temporal logic interpreted over MTSs, cf. [5]) is used. A number of results regarding the preservation
of logical properties from family (macro) to product (micro) behaviour is formally defined and proved in [12].
These results pave the way for the more efficient (global) family-based analyses of MTSs, limiting the need
for costly (local) product-by-product analyses of LTSs. Finally, [12] contains the full syntax and semantics
of the high-level modal process algebra used for the specification of MTSs, which is moreover extended with
value-passing communication in [4]. Fig. 3 depicts the result of verifying the v-ACTL formula

AG EF2 {givebike(s1)} true (2)
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Figure 3: Result of a family-based analysis with the VMC model checker.

using VMC (described below) over a family of bike-sharing systems specified in the value-passing modal
process algebra accepted by VMC. Formula (2) expresses the property that for all products it is always the case
that there exists a path in which eventually docking station 1 (s1 in the formula) must give a bike to a user,
thus providing the requested service. The operator F2 is specific to v-ACTL as it takes the modality of the
transitions (i.e., may or must) into account.4 The fact that this property requires a ‘must path’ is the reason that
this is a property that holds for all valid products (i.e., LTSs) of the MTS whenever it holds for the family, as
VMC reports.

VMC: an on-the-fly variability model checker. The complete framework described above was implemented
in a model-checking tool developed before the start of the project: the Variability Model Checker VMC [34]
(fmt.isti.cnr.it/vmc). Given the behaviour of a product family modelled as an MTS with an additional set
of variability constraints, it allows the explicit generation of valid product behaviour and the resulting LTSs can
be verified against a logic property expressed in v-ACTL. VMC was extended during the project in [5] such
that a logic property expressed in v-ACTL can be verified directly over the MTS, relying on the fact that under
certain syntactic conditions validity over the MTS guarantees validity of the same property for all the family’s
valid products (LTSs). This provides a relation between global macro views and local micro views.

VMC is the most recent product of the KandISTI family of model checkers [32] (fmt.isti.cnr.it/
kandisti) developed at ISTI–CNR over the past two decades, which includes also FMC [58], UMC [35]
and CMC [54]. Each of them allows for the efficient verification, by means of explicit-state on-the-fly model
checking, of functional properties expressed in the KandISTI Temporal Logic (KTL), whose full syntax has
been developed during the project and is provided in [2]. KTL is an action-based and state-based branching-
time temporal logic derived from the family of logics based on ACTL [49, 51], i.e., action-based CTL, and
encompasses v-ACTL.

The model checkers of KandISTI share an optimised verification engine, exploiting an on-the-fly analysis
approach such that only part of the state space needs to be generated and explored. Their input models are
rather different though, due to the varying fields of application for which they were developed: VMC has been
discussed above; FMC accepts automata networks integrating the communication and synchronisation mecha-
nisms from the classical process algebras CCS, CSP and LOTOS [56] in a single process-algebra, thus allowing

4The intuitive interpretation of F2 {ψ} φ is that there exists a future state, reached by an action satisfying ψ , in which φ holds, and
all transitions on the path until that state are must transitions. In VMC, F2 must be written as F#.
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both multi-way synchronisation and value-passing; UMC accepts systems specified as sets of communicating
UML-like state machines; CMC, finally, accepts systems specified in a calculus for the orchestration of web
services.

In [11], it was shown how also the FMC model checker (fmt.isti.cnr.it/fmc) and its KTL logic can
be quite easily used for the modelling and (family-based) analysis of behavioural variability in SPLs. FMC is
a modelling and verification framework for the definition, exploration, analysis and model checking of system
designs modelled as parallel compositions of sequential terms. FMC accepts parameterised specifications and it
supports the verification of properties expressed in a logic that specifically allows one to correlate the parameters
of different actions within a formula. This feature, together with FMC’s lazy evaluation and special-purpose
predicates, can be used to tailor formulas to the verification of a specific subset of products of an SPL, thus
allowing for family-based analyses of SPLs. The complexity of verifying a formula for a subfamily (i.e., a
subset of products characterised by a subset of features) obviously does not depend on the size of the rest of the
family. In combination with the on-the-fly model-checking algorithm of FMC, this means that more often than
not only part of the complete state space needs to be inspected, which considerably improves the scalability of
our approach.

FTS vs. MTS. The relation between FTSs and MTSs as used in SPLE still needs to be studied in full detail,
both with respect to their semantic models and their associated model checkers. FTSs come with dedicated SPL
model checkers like SNIP [41], which is now integrated and reengineered in the product line of model checkers
ProVeLines [44], allowing efficient family-based analyses capable of relating errors and undesired behaviour
to the exact sets of products in which they occur. In [9], an automatic technique is provided to transform FTSs
into MTSs with additional sets of variability constraints in the specific format accepted by VMC. The crux
of this transformation is thus to go from variability constraints expressed in terms of features to variability
constraints expressed in terms of actions. Formally, an FTS is a doubly-labelled LTS, in which each state is
labelled by an atomic proposition, but this labelling is ignored in [9]. In the future, we intend to consider also
the state labelling of FTSs by switching from a purely process-algebraic description of MTSs in VMC to a
richer modelling language. Other KandISTI members in fact have both an action and a state labelling.

While the behaviour of an SPL can, of course, be directly specified in FMC, [11] describes a technique to
automatically transform an FTS into a process-algebraic model in the specific format accepted by FMC, thus
paving the way for a comparison of the modelling and analysis of SPL behaviour also in this model-checking
framework.

To conclude, we studied two transformations from FTS into the MTS framework (both illustrated on the
same bike-sharing example). These transformations serve two purposes. First, they contribute to a better un-
derstanding of the fundamental differences between the two approaches (i.e., expressing variability constraints
over actions with or without an associated feature label). Second, they pave the way to compare the modelling
and analysis of SPL behaviour in three different settings. However, a detailed evaluation and comparison is left
for future work.

Behavioural relations for product lines. An alternative approach to formally reasoning about SPL is pre-
sented in [22], which focusses on behavioural relations, such as algebraic simulation and bisimulation, instead
of verification through model checking. This is done in the context of Variant Process Algebra (VPA), a calcu-
lus endowed with an operational semantics mapped onto LTSs, and designed along the lines of CCS and CSP.
The syntax, however, is minimally extended in order to promote variants to become first-class citizens of the
language. In essence, the underlying idea in VPA is to tag a process term with the set of variants where it is
enabled. The syntax of the (binary) operator for parallel composition is extended in VPA in a similar fashion,
by using two sets of variants that specify where the synchronising processes are enabled. In more detail, VPA
has the following features:

1. A multi-modal semantics, where each variant gives rise to a distinct transition relation over VPA. The
approach we take is different from the literature on extensions of MTSs in that variants are explicitly
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enumerated. The approaches based on MTSs, instead, distinguish between mandatory (must) and op-
tional (may) behaviour through two different transition relations [57, 64, 53, 68, 28]. In this respect,
VPA is more closely related to [29] whereby, while still considering may and must transition relations, a
semantics is given to explicitly derive all the products of a family.

2. VPA has a family-based semantics which leads to an LTS that characterises the behaviour of the whole
family. For every VPA process, the behaviour of any variant is simulated by the behaviour induced by the
family-based semantics. In this sense the use of simulation as a useful means of relating a single product
with the whole product line (e.g., [53, 42, 29]) is lifted to process algebra.

3. Finally, the ability to explicitly label variants allows reasoning about the relationship between them.
VPA introduces the notion of variant simulation which can be useful to establish that a variant v1 can
be regarded as a conservative extension of another variant v2 in that it contains all of v2’s behaviour, and
possibly more. In some cases it is possible to find a variant that can simulate every other variant (or
possibly large subsets thereof). This may bring about the advantage that one can study the behaviour of
such a variant instead of the model induced by the family-based semantics, which may turn out to be
more complex (e.g., because of more states and/or transitions). Sufficient conditions, solely based on
syntactic checks on a process term, are provided in order to establish variant simulation for VPA.

3.3.2 Quantitative Variability Analysis and Applications to Bike-Sharing Systems

We have obtained some initial results concerning extensions of the current qualitative approaches for the veri-
fication of SPLs to quantitative and scalable approaches that can be used in the context of CAS. This research
has benefitted from our ongoing collaboration with PisaMo S.p.A. (www.pisamo.it), an in-house public mo-
bility company of Pisa’s administration that has introduced the public bike-sharing system CicloPi in Pisa two
years ago, and its supplier Bicincittà S.r.l. (www.bicincitta.com). They have generously shared with us their
knowledge on bike-sharing systems in general and on CicloPi in particular. This bike-sharing system currently
has only 15 stations and roughly 140 bikes, which makes it an ideal case study to start with.

In [3], SPLE techniques were used to define a family of bike-sharing systems, after which support for vari-
ability analysis was sought among available tools. This resulted in the tool chain depicted in Fig. 4, including
the (academic) tools S.P.L.O.T. [70], FeatureIDE [84], Clafer [30], ClaferMOO [72] and VMC [34, 5]. It pro-
vides different functionalities regarding the analysis of SPLs, from feature modelling to product derivation and
from quantitative evaluation of the attributes of products to model checking value-passing modal specifications.
The tool chain served as a first experiment towards more sophisticated variability analysis techniques.

To address also quantitative analysis, in [2] the SPLE paradigm was considered at the level of system engi-
neering by first defining a reference feature model and then adding feature attributes and global quantitative con-
straints, in the form of an attributed feature model in the Clafer toolset. In particular, its ClaferMOO(Visualizer)
allows one to compare system configurations (variants) with respect to various quality dimensions (e.g., cost),
select the most desirable one and analyse the impact of reconfigurations on a variant’s quality dimensions. In
fact, it was used for quantitative analyses and multi-objective optimisation of the resulting attributed feature
model.

A preliminary study towards automatic decision support for the initial design of a bike-sharing system,
as well as its successive adaptations and reconfigurations, taking both qualitative and performance aspects into
consideration, is described in [14]. To this aim, two complementary strategies for the evaluation of bike-sharing
system designs by means of automated tool support are presented. The Clafer toolset was used to perform
multi-objective optimisation of variability models with feature attributes and cardinalities (in particular the
one depicted in Fig. 2 and their multiplicity in a particular BSS configuration) while the recently developed
mean field model checker FlyFast [66, 67] was used to assess performance and user satisfaction aspects of
variants of large-scale bike-sharing systems. In particular, the bike sharing model studied in the first reporting
period (see Deliverable 3.1) has been extended to model a heterogenous system with stations with different
capacities and bike request and return rates that vary across the areas of the city. It has also been shown how
to obtain commonly used indicators such as the normalised bike availability per station (NAB) from the data
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Figure 4: Tool chain used for the experiments described in [3].

generated by the mean field models which facilitates comparison between models and real data. The focus was
on a simplistic comparison of two different BSS configurations with respect to their cost, user satisfaction and
capacity (in terms of parking slots) to illustrate the ideas. A future goal could be to strengthen the integration
of these two approaches and use the outcome of performance analyses as input for variability modelling. One
could, for example, measure the user satisfaction for specific configurations and feed the resulting values into
a variability model. Performance analyses such as those performed in [14] (e.g., the probability of finding an
empty/full docking station given the specific capacity of a BSS configuration) clearly have an impact on user
satisfaction. Moreover, the approach of [14] was showed to easily scale to bike-sharing systems of realistic
size.

Finally, [1] explores the possibility of applying a machine learning approach to implement features and, at
the same time, evaluate them to derive meaningful values to fill the (attributed) feature model. It concentrates
on predictive features that are able to analyse the current state and some historical data, and provide some
information to the user. More generally, the purpose of the analysis is to evaluate the features and their possible
combinations to help a stakeholder to decide which product of a line to deploy, making the best possible
compromise between cost and usefulness.

FLan: a family of feature-oriented languages. The FLan family of Feature-oriented Languages (FLan [33],
PFLan [10] and QFLan [13]) contributes to ongoing efforts to lift successful specification languages and ver-
ification techniques from single system engineering to SPLE. The FLan family is inspired by the concurrent
constraint programming paradigm of [75], its adoption in process calculi [39] and its stochastic extension [37].
In FLan, a rich set of process-algebraic operators allows one to specify both the configuration and the behaviour
of products, while a constraint store allows one to specify all common constraints known from feature models
as well as additional action constraints reminiscent of FTSs. The execution of a process is constrained by the
store (e.g., to avoid introducing inconsistencies), but a process can also query the store (e.g., to resolve config-
uration options) or update the store (e.g., to add new features, even at run time). Its implementation in Maude
allows analyses ranging from consistency checking (by means of SAT solving) to model checking.

This line of research was continued by investigating the suitability of statistical model-checking techniques
for the analysis of probabilistic models of SPLs with complex quantitative constraints and advanced feature
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Figure 5: Sketch of bike-sharing behaviour, omitting the action probability weights.

installation options. During the project, FLan was equipped with the means to specify probabilistic models
of SPLs, resulting in PFLan [10]. The main distinguishing modelling feature of FLan is the clean separation
between an SPL’s configuration and run-time aspects. PFLan adds to this the possibility to equip each action
(including those that install a feature, possibly at run time) with a probability weight, which can represent
uncertainty, a failure rate, randomisation or simply relative preferences, resulting in a DTMC model after
appropriate normalisation of the weights. An efficiently executable implementation in Maude, together with the
distributed statistical model checker MultiVeStA [80], developed during the first reporting period of the project
and described in Deliverable 5.1, allows one to estimate the likelihood of specific configurations and behaviour
of an SPL, and thus to measure non-functional aspects such as quality of service, reliability or performance.

QFLan: probabilistic SPL models with quantitative constraints. QFLan, which was introduced in [13],
further extends PFLan with dynamic uninstallation and replacement of features and with advanced quantitative
constraint modelling options. This allows for more involved quantitative analyses, now requiring SMT solving.
This was achieved by integrating an efficiently executable Maude implementation of QFLan with Microsoft’s
Z3 [71] and with MultiVeStA.

The advanced quantitative constraint modelling options concern the ‘cost’ of features, i.e., feature attributes
related to non-functional aspects such as price, weight, reliability, etc. In particular, the novel modelling options
introduced in [13] are:

1. Arithmetic relations among feature attributes (e.g., the total cost of a set of features must be less than a
certain threshold);

2. Propositions relating the absence or presence of a feature to a quantitative constraint as in 1 (e.g., if a
certain feature is present, then the total cost of a set of features must be less than a certain threshold);

3. Richer action constraints involving quantitative constraints as in 1 (e.g., a certain action can be performed
only if the total cost of the set of features constituting the product is less than a certain threshold).

The uninstallation and replacement of features can be the result of malfunctioning or of the need to install a
better version of the feature (e.g., a software update). It is important to note that the above type of quantitative
constraints are significantly more complex than the ones that are commonly associated to attributed feature
models. Moreover, quantitative constraints based on arithmetic relations between feature attributes are a novel
contribution of QFLan.

Quantitative variability analyses of a bike-sharing scenario. The resulting modelling and analysis frame-
work was applied to a bikes product line case study: essentially the Bike feature subtree of the attributed feature
model depicted in Fig. 2 (with an additional computational unit feature) and the behaviour sketched in Fig. 5
(the action probability weigths are omitted from the drawing to avoid cluttering).

Some typical properties of interest for the bike-sharing case study are:

(P1) Average price, weight or load of a bike either when it is first deployed or over time;
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Figure 6: MultiVeStA results for P1 and P2: price (l), weight and load (m), installation probability (r).

(P2) For each of the 15 primitive features (i.e., the leaves in Fig. 2), the probability to have it installed either
when a bike is first deployed or over time.

Analysing P1 and P2 at a bike’s first deployment can be useful for studying an initial scenario, to estimate the
required initial investments and infrastructure. Bikes with a high price and load (i.e., with a high technological
footprint) or equipped with a battery might, for example, require docking stations with specific characteristics
or have to be collected at night for safe storage. Instead, analysing P1 and P2 over time provides an indication
of how those values evolve, for example, to estimate the average value in euros of a deployed bike and the
financial consequences of its loss. In general, properties like P2 measure how often (on average) a feature
is actually installed in a product, which is important information for those responsible for the production or
programming of a specific feature or software module. Some results of analysing P1 and P2 over time with
MultiVeStA [80] are shown in Fig. 6 for prices (left), for weights and loads (middle) and for the probabilities
of installing features (right).

Fig. 6(left) shows that the average price (on the y-axis) of the intermediate bikes generated from the SPL
starts at e 200, in line with the initial configuration (features AllYear and Diamond installed). Then the price
grows with respect to the number of performed simulation steps, consistent with the pre-configuration phase
FACTORY during which a number of features can be installed, followed by a customisation phase DEPOT, where
features can be (un)installed and replaced. The probability of a bike to return to the DEPOT after its first deploy-
ment is quite low (in fact, in the QFLan specification PARKED has a transition with rate 10 towards MOVING

and one with rate 1 towards DEPOSIT, interpreting the probability weights as rates in this case, leading to the
embedded DTMC as a model). Thus, on average, the price of bikes is only slightly affected by (un)installations
and replacements performed by successive DEPOT phases. Finally, as confirmed by Fig. 6(right), the probabili-
ties (on the y-axis) for each feature to be installed evolve similarly to the average price, weight and load of the
generated products. Notably, the pre-installed feature AllYear (y), relating to the kind of tires, has probability
1 of being installed at step 0, after which the probability decreases during the initial steps.

Performance analysis of variant-rich software systems. The focus of [21] was to find effective means to
handle variability in software performance models. In particular, we considered a class of UML Activity Dia-
grams (ADs), to model systems which can be reasonably described as workflow processes, such as real-world
data-centers [82], service-oriented architectures [63] and automation systems [86]. To capture performance
properties, ADs are augmented with annotations (such as the duration to execute an activity of an activity
node) and interpreted as continuous-time Markov chains, along the lines of established routes in model-driven
software performance engineering. These performance-annotated ADs (PAADs) are integrated with SPL tech-
niques to precisely capture variability aspects. More specifically, we considered a delta-oriented approach,
where possibly many variants can be generated as a result of applying changes (i.e., deltas) to a core PAAD [76].
This represented a novel application of delta modelling, which has so far been used to represent static variability
of software architectures [61] and Java programs [77].

A straightforward solution technique requires a separate analysis of each variant—the so-called product-
based evaluation. In [21], a family-based approach was considered. The configurable parameters of the model
under study, inferred by the kinds of delta operations defined on the AD, are used for obtaining a solution in
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symbolic form. In this way, performance indices can be simply obtained by evaluating a polynomial expression
that explicitly depends on the configurable parameters. The evaluation may become faster than the product-
based analysis, which is based on the numerical inversion of a matrix of size equal to the number of nodes
in the PAAD. By numerical experimentation we show that our family-based approach is up to three orders of
magnitude faster, with a tendency to become increasingly more convenient as the model size grows. Although
family-based SPL analyses have been introduced for type checking [27, 52, 46] and model checking [42, 68,
28, 29], for the first time this approach is considered for the efficient performance modelling of SPLs.

3.3.3 Behavioural Model Reduction by Abstraction

For the efficient and scalable model checking of SPLs, behavioural equivalence relations to support model
reduction and comparison need to be lifted from LTSs to SPL models. We present a new approach addressing
this aspect.

Feature-oriented modular verification. A different approach to deal with an SPL’s possibly exponential
number of products is to make an existing off-the-shelf model checker amenable to model checking SPLs.
We worked towards a feature-oriented modular verification approach, using an interpretation of FTSs in the
mCRL2 language and toolset. mCRL2 is a formal specification language for the modelling of distributed
systems and their interactions, which comes with a state-of-the-art toolset for the qualitative behavioural anal-
ysis [45, 59]. It has already shown its merits in dealing with huge state spaces consisting of billions of states.
The mCRL2 data language allows one to smoothly deal with feature sets and attributes, its process language is
sufficiently rich to model feature selection and product behaviour based on an FTS semantics, and the variant
of the µ-calculus that acts as property language for the toolset supports the use of data in formulas.

In [6, 7], it was shown how mCRL2 can indeed be exploited for the modelling and analysis of SPLs. In
particular, a proof-of-concept was elaborated, illustrating how to use mCRL2’s parametrised data language to
model and select valid product configurations, in the presence of feature attributes and quantitative constraints,
and to model and check the behaviour of valid products. In [8], it was subsequently shown how the result-
ing behavioural model can be modularised (based on feature-driven borders) into separate components, using
branching bisimulation techniques to isolate them; these components are equipped with interfaces (in the form
of exit and (re-)entry transitions) that allow an additional driver process to glue them back together on the
fly, exhibiting the same behaviour as before. This is a powerful abstraction technique that allows mCRL2 to
concentrate on the relevant components (features) for the specific property under scrutiny, abstracting from the
other components. This approach thus differs from modular or compositional verification in the classic sense
of (re)composing smaller verification results on modules or components to derive properties of the composed
system.

A behavioural equivalence for FTSs and model minimisation. In [15], finally, a behavioural equivalence
for FTSs was proposed as a generalisation of branching bisimulation for LTSs. It was proved that branching
feature bisimulation for an FTS of a family of products coincides with branching bisimulation for the LTS
projection of each of the individual products. For a restricted notion of coherent branching feature bisimulation,
a minimisation algorithm was presented and its correctness proved. This thus complements and formalises
part of the approach outlined in [6, 7, 8]. Although the minimisation problem for coherent branching feature
bisimulation is shown to be NP-complete in general, application of the algorithm in the setting of a small case
study results in a significant speed-up of family-based verification by model checking behavioural properties.
It remains to establish the subset of the modal µ-calculus preserved by branching feature bisimulation and
apply the approach to an industrial-size SPL. The conjecture is that, exactly as for branching bisimulation, it
preserves the modal µ-formulae without the next operator [50]. It would also be interesting to see whether the
minimisation algorithm’s complexity can be reduced, possibly by lifting some optimisations from the Groote
and Vaandrager algorithm for LTS to the FTS setting [60].
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3.4 Novelty and Future Work

The results presented in this deliverable contain several novel contributions:

• Family-based analysis of SPLs with a delta-oriented approach to performance-annotated UML activity
diagrams is a novel application of delta modelling and the first attempt to efficient performance modelling
of SPLs.

• Quantitative constraints based on arithmetic relations between feature attributes are an innovative as-
pect of QFLan. Moreover, the implementation of QFLan led to the first application of statistical model
checking in SPLE.

• The explicit enumeration of variants in VPA, allowing one to relate concrete variants to the whole product
line and variants to each other, is different from other calculi defined in SPLE.

• The transformations from FTSs into the input models accepted by the FMC and VMC model checkers
are new.

• The special-purpose refinement relation for MTS models of SPLs that defines their valid product be-
haviour (modelled as LTSs) is fundamentally different from the classical one for MTSs.

• The feature-oriented modular verification approach developed for the mCRL2 toolset differs from mod-
ular or compositional verification in the classic sense. Moreover, the branching feature bisimulation for
FTSs (and its minimisation algorithm) that is at the heart of this approach, is the first example of lifting
branching bisimulation to SPL models.

A number of items for future work can be identified:

• Consider further behavioural relations for VPA (e.g., a notion of variant bisimulation) and provide logical
characterisations of all such relations to study model-checking properties of VPA models.

• Equip the QFLan implementation with optimisation capabilities, so that configuration options optimising
objective functions can be obtained automatically.

• Provide an FTS and/or an MTS semantics for members of the FLan family to be able to use dedicated
SPL model checkers.

• Establish the subset of the modal µ-calculus that is preserved by (coherent) branching feature bisimula-
tion (i.e., what properties are preserved by model reduction).

• Perform a quantitative evaluation of the expressivity, complexity and scalability of the modelling and ver-
ification frameworks for (family-based) behavioural variability analysis of SPLs discussed in this deliv-
erable (i.e., those based on MTSs/FMC/VMC, FTSs/SNIP/ProVeLines, QFLan/Maude/Z3/MultiVeStA
and FTSs/mCRL2).

4 Conclusions and Roadmap

In this deliverable we reported on the progress made concerning the objectives of Task 3.2 and Task 3.3 of Work
Package 3 during the second half of the first reporting period and during the second reporting period of the
project. In particular we addressed the development of behavioural equivalence relations for ODE to support
model reduction and comparison of models and alternative model reduction techniques and the extension of
techniques to deal with variability analysis in the context of collective adaptive systems.
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Main achievements. Below we briefly summarise the main achievements mentioned in the individual sec-
tions:

For what concerns model reduction techniques we mention:

• The development of two new bisimulation relations for chemical reaction networks: forward CRN bisim-
ulation and backward CRN bisimulation based on exact ODE lumpability and uniform lumpability, re-
spectively. These yield reductions upto four orders of magnitude compared to the size of the original
CRN’s which in some cases made it possible to analyse models that otherwise would be intractable [16].

• The development of a model reduction technique based on the identification of populations within the
model that can be removed or ignored [17].

For what concerns variability analysis for CAS we mention:

• The development of a method to effectively handle variability in software performance models combining
a delta-oriented approach with performance-annotated UML activity diagrams obtaining solutions in
symbolic form suitable for family based analysis [21].

• The introduction and implementation of the probabilistic and feature-oriented language QFLan which
offers advanced quantitative constraint modelling options [13].

• The development of a branching feature bisimulation relation for FTSs, together with an algorithm for
model minimisation [15].

• The formalisation of a special-purpose refinement relation for MTSs to determine valid product behaviour
modelled as LTSs, together with the precise set of logical properties that it preserves, and the implemen-
tation in the VMC model checker for variability analysis [12].

Relationship to other work packages.

WP1 Emergent Behaviour and Adaptivity. The work on approximate aggregation for nonlinear ODEs is of
direct relevance both for Task 3.2 of WP3, where the main focus is on model reduction, and for Task
1.1 of WP1, described in Sect. 3.2 of Deliverable 1.2 where the theoretical results are used to develop
practical numerical methods to analyse a class of limit models for uncertain and imprecise population
models. Also the work on automatic moment-closure analysis of population CTMC models by Feng,
Hillston and Galpin [18] forms a bridge between work in WP3 and WP1 as it contributes a numerical
technique to analyse the evolution of the first-order, the second-order, and the second-order joint moments
of an arbitrary population CTMC model in an ODE based setting.

WP2 Collective Adaptive Behaviour in Space. There are several relationships to the work in WP2. In partic-
ular, the work by Feng and Hillston in which a technique is presented with which populations in large
CAS models can be identified that do not have a significant impact on the target populations (i.e. those
populations that have been selected for analysis), and thus can be removed from the model, reducing its
size considerably. This approach may also be a promising technique when spatial aspects of CAS are
considered. This is in part also shown in the bike sharing case study on which this technique is applied.
Furthermore, it is likely that some of the other ODE reduction techniques may be applied to models that
include spatial aspects. This is part of future work.

WP4 Language and Design Methodology. A number of the techniques presented in this deliverable can be
readily extended to (a subset) of the CARMA language. In particular the work by Feng and Hillston
mentioned earlier and that on automatic moment-closure analysis for population CTMC models.

WP5 Model Validation and Tool Support. For what concerns tool support, the reduction methods developed
for chemical reaction networks have been implemented in a prototype tool that is described in more detail

QUANTICOL 20 Sept 30, 2015



(Revision: 0.0; September 29, 2015) Sept 30, 2015

in Sect. 4 of Deliverable 5.2. In the same section also a description of the tool for model reduction of
PALOMA5 models based on moment closure developed in [18] can be found, as well as a description
of the FlyFast model checker based on the on-the-fly fast mean field model checking technique that was
described in Deliverable 3.1 of WP3. The latter two tools have been implemented as a prototype on the
Eclipse platform.

Roadmap for the final reporting period concerning Task 3.2 and Task 3.3. For the final reporting period
of the project below we briefly outline the research we plan to undertake concerning Task 3.2 and Task 3.3. A
roadmap for Task 3.1 of WP3 was already provided in Deliverable 3.1 of WP3 and will be further addressed in
the forthcoming Internal Report that will appear in month 36.

For what concerns Task 3.2 we plan to focus on:

• The exploration and exploitation of the model reduction technique based on the identification of popula-
tions with insignificant impact on the selected target populations under analysis developed by Feng and
Hillston. In particular its application in combination with statistical model checking. Also the application
of ODE reduction techniques in combination with fluid model checking will be explored.

• Further work on CRN bisimulation. Differential bisimulation and forward CRN bisimulation are suffi-
cient conditions for aggregation. It would be interesting to weaken their assumptions in order to be able
to obtain coarser aggregates. For differential bisimulation, a possible strategy would be to give up com-
positionality, allowing for instance two processes not be distinguished if they perform different actions
that have nonetheless the same effect on the underlying ODE system. It would be interesting to extend
these to other popular kinetic mechanisms in systems biology, for instance Hill and Michaelis-Menten ki-
netics, because systems biology provides one with a rich repository of realistic large-scale models which
can be used to study the effectiveness and scalability of the proposed reduction techniques.

• We plan to investigate other techniques to obtain tighter bounds for differential hulls. The developments
on uncertain ODE models developed in WP1 and reported in Deliverable D1.2 appear to be promising in
this respect.

• The investigation and development of abstraction techniques at the level of the CTMC semantics.

For what concerns Task 3.3 we plan to focus on:

• Establishing a subset of the modal µ-calculus that is preserved by (coherent) branching feature bisimu-
lation (i.e., which properties are preserved by model reduction), which might lead to a feature-oriented
modal µ-calculus.

• Considering further behavioural relations for VPA (e.g., a notion of variant bisimulation) and provide
logical characterisations of all such relations to study model-checking properties of VPA models.

• Strengthening the integration of variability analysis (by multi-objective optimisation) of system configu-
rations with performance analysis (by mean field model checking) of behavioural models. In particular
we are aiming to use the outcome of performance analyses as input for variability modelling, in order
to come to an automatic decision support system for the initial design of a bike-sharing system, as well
as its successive adaptations and reconfigurations, taking both qualitative and performance aspects into
consideration.

• Improving the QFLan implementation so that it scales better. Replace the current DTMC semantics with
a CTMC one, in order to enrich the language with the notion of execution time. Evaluate the performance
of the QFLan implementation, which includes applying it to a larger number of examples.

Where possible, we will consider the extension of the techniques to (a subset) of the CARMA language.

5The techniques will be made available for CARMA once a suitable dialect of CARMA is identified.
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