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6. Inscriptions Visual Recognition
A comparison of state-of-the-art object recognition
approaches

Giuseppe Amato, Fabrizio Falchi, Fausto Rabitti, Lucia Vadicamo

Abstract
In this paper, we consider the task of recognizing inscriptions in images such
as photos taken using mobile devices. Given a set of 17,155 photos related to
14,560 inscriptions, we used a 𝑘-NearestNeighbor approach in order to perform
the recognition. The contribution of this work is in comparing state-of-the-art
visual object recognition techniques in this specific context. The experimental
results conducted show that Vector of Locally AggregatedDescriptors obtained
aggregating Scale Invariant Feature Transform descriptors is the best choice for
this task.
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6.1. Introduction
The large availability of digital cameras, especially embedded in smart-
phones and tablets, allows final users and researchers to make photos
of their objects of interest at almost no cost. On one side, we have users
making thousands of photos. On the other side, it is very common for
archives to have photos of the objects that they are conserving or they
have information about. In this context, there is a growing demand of
information retrieval systems able to search by using images as query.
The basic idea is to allow users to make a photo of the object they
are interested on, recognizing the object between the ones stored in a
repository, and then returning related information.

The research reported in this paper was conducted in the context of
the Europeana network ofAncientGreek andLatin Epigraphy (EAGLE)
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CIP-Best Practice Network.1 In this work, we focus on searching for
the most similar inscriptions in an archive with respect to the one
represented in a photo. The dataset we used consists of 17,155 photos
related to 14,560 inscriptions that were made available by Sapienza
University of Rome, within the EAGLE project. This functionality
will be integrated on an official EAGLE mobile application in order to
allow a visitor of a site where one of the archived inscriptions is visible
(museum, street, archaeological site, printed reproduction, etc.) to take
a picturewith amobile phone, send the picture to the central repository
and receive back the information associated with that picture.

For achieving the task of identifying objects in an image or video
sequence, usually referred to as object recognition, research conducted
in both Computer Vision and Multimedia Information Retrieval fields
has focused on local features that provide a representation allowing
matching local structures between images. First, distinctive key points
are selected in each image. Second, a description of each selected region
is given. Direct local features matching has been proved to be very
effective in recognizing the same objects in two photos. However, to
achieve scalability (i.e., to be able to search in large datasets) aggrega-
tion techniques are necessary in order to summarize the information
reported for each key point.

Traditionally, object recognition has been successfully applied to
consumer products, buildings, monuments and landmarks. However,
we did not find any specific experiments conducted on ancient inscrip-
tions. Moreover, state-of-the-art techniques are very effective on small
sets (tens) of objects while approximate techniques are applied when
millions of objects have to be recognized. The number of photos of
inscriptions expected in the context of the EAGLE project is in the
middle of these two extremes. Thus, in the following, we report the
results obtained testing various state-of-the-art techniques in order to
effectively recognizing inscriptions in photos given a medium-large
scale set (tens of thousands) of known inscriptions.

The rest of this paper is structured as follows. In Section 6.2, we
discuss related work. In Section 6.3, we give information about the
tested approaches. Then, we specify the experimental settings and
discuss the obtained results in Section 6.4. Finally, in Section 6.6, we
report conclusions and discuss future work.

1 www.eagle-network.eu

www.eagle-network.eu
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6.2. Related Work

In the last few years, research on object recognition has focused on local
features [Mikolajczyk et al. 2005, Tuytelaars et al. 2008]. Following
this approach, an image is represented by describing the visual content
of typically thousands of regions of interest automatically selected. To
achieve best effectiveness, images are compared bymatching their local
features and searching for a geometric transformation that can associate
the regions of both images.

In the last few years, the problem of recognizing cultural heritage
related objects, in particular landmarks, has received growing attention
by the research community. As an example, Google presented its
approach to building a web-scale landmark recognition engine [Zheng
et al. 2009]. The problemof landmark recognition is typically addressed
by leveraging on techniques of automatic classification, as for instances
kNN Classification [Dudani 1976], applied to image features.

Between 2007 and 2010, the VISITO Tuscany2 (VIsual Support to
Interactive TOurism in Tuscany) project, has focused on technologies
able to offer an interactive and customized advanced tour guide ser-
vice to visit the cities of art in Tuscany. This project has investigated
cultural heritage object recognition, (such as monuments, landmarks,
etc.) developing a mobile application and related research papers such
as [Amato et al. 2011]. However, inscriptions recognition was out of the
scope of the project.

6.3. Tested approaches

In order to recognize inscriptions in images, we selected and tested
the most promising approaches from the recent literature. In this
Section, we report brief information about these approaches. First we
discuss the Scale Invariant Feature Transform (SIFT) that we selected
as local feature. Then we discuss the Bag-of-Features (BoF) and Vector
of Locally Aggregated Descriptors (VLAD) that make use of the local
features (SIFT in our case) in order to achieve high efficiency and effec-
tiveness via aggregation of the information they contain.

2 http://www.visitotuscany.it

http://www.visitotuscany.it
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6.3.1. SIFT
SIFTs [Lowe 2004] are low level features extracted from key points
selected using difference of Gaussians applied in scale space to a series
of smoothed resampled images. The description of the region around
this selected points relies on histogram of gradients. SIFTs are not
only the most important and cited local features ever defined, but they
are still almost unbeaten in terms of effectiveness. Recently, binary
local features have been proposed in order to improve efficiency of
direct local features matching with a reduced lost in effectiveness. In
our experiments we achieve scalability aggregating features and thus
we are more interested in effective representation of the images than
efficient comparison of the features themselves.

6.3.2. Bag-of-Features
The Bag-of-Features (BoF) was initially proposed in [Sivic et al. 2003]
and has been studied in many other papers. The goal of the BoF
approach is to substitute each local descriptor of an image with vi-
sual words obtained from a predefined vocabulary in order to apply
traditional text retrieval techniques to Content-Based Image Retrieval
(CBIR).

The first step is selecting some visual words creating a vocabulary.
The visual vocabulary is typically built clustering, using 𝑘-means, local
descriptors of the dataset and selecting the centroids. The second step
assigns each local descriptor to the identifier of the nearest word in
the vocabulary. At the end of the process, each image is described
as a set of visual words. The retrieval phase is then performed using
text retrieval techniques considering a query image as disjunctive text-
query. Typically, the cosine similarity measure in conjunction with a
termweighting scheme (e.g., TF-IDF [Salton et al. 1987]) is adopted for
evaluating the similarity between any two images.

The BoF approach can be also used in conjunction with geometry
consistency checks typically performed using RANdom SAmple Con-
sensus (RANSAC) [Fischler et al. 1981] to findhomography transforma-
tions. In this case, the BoF representation allows fast matching between
local features. In fact, any two local features assigned to the same visual
words are considered to match.

However, asmentioned in [Zhang et al. 2009], “a fundamental differ-
ence between an image query (e.g. 1500 visual terms) and a text query



6. Inscriptions visual recognition 121

(e.g. 3 terms) is largely ignored in existing index design”. Efficiency
and memory constraints have been recently addressed by aggregating
local descriptors into a fixed-size vector representation that describe
the whole image. In particular, Fisher Vector (FV) [Sánchez et al. 2013]
and VLAD have shown better performance than BoF. In this work, we
will focus on VLAD which has been proved to be a simplified non-
probabilistic version of FV [Jégou et al. 2012]. Despite its simplicity,
VLAD effectiveness is comparable to that of FV while, in terms of
efficiency VLAD is preferable.

6.3.3. Vector of Locally Aggregated Descriptors (VLAD)
The VLAD representation was proposed in [Jégou et al. 2010]. As for
BoF, a codebook 𝜇, …, 𝜇𝑘 is first learned using a cluster algorithm (e.g.,
𝑘-means). Each local descriptor 𝑥𝑡 in each image is then associated to its
nearest visual word 𝑁𝑁 (𝑥𝑡) in the codebook. For each codeword, the
differences 𝑥𝑡 − 𝜇𝑖 of the vectors 𝑥𝑡 assigned to 𝜇𝑖 are accumulated:

𝑣𝑖 = 
𝑥𝑡∶𝑁𝑁(𝑥𝑡)=𝜇𝑖

𝑥𝑡 − 𝜇𝑖.

The VLAD representation is the concatenation of the accumulated
vectors, i.e. 𝑉 = 𝑣𝑇…𝑣𝑇𝐾 . Power-law and 𝐿 normalization are usually
applied and 𝐿 Euclidean distance has been proved to be effective for
comparing two VLADs.

VLAD descriptors have a high dimensionality. Principal Compo-
nent Analysis has been proposed to have a more compact representa-
tion.

6.4. Experiments
6.4.1. Dataset
Being partner of the EAGLE project, we had the opportunity to access
a dataset of 17,155 photos related to 14,560 inscriptions made available
to us by Sapienza University of Roma. For our experiments, we also
needed a ground truth, i.e., photos in which we want to automatically
recognize the inscription together with the actual inscription repre-
sented in the image. We constructed this ground truth selecting 70
photos from thewhole dataset and removing them from the knowledge
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base. In other words, we removed these query photos from the ones
that are given to the computer in order to understand the visual content
of each inscription. This was only possible for the inscriptions that had
more than one photo. We also carefully selected queries that could
represent the various types of inscriptions. In Fig. 6.1 we report 5 query
examples together with the other images for the same object available
in the dataset.

Fig. 6.1. Examples of query images and associated images of the same inscription.

6.4.2. Quality measures
In order to recognize the actual object in a query image, we basically
perform a visual similarity search between all the images in the dataset.
Thus, the main goal is to have one image of the same inscription as
first result. Whenever this is not the case, it is interesting to understand
at which position in the result list the most visually similar photo of
the same object appears. In fact, while in this paper we are focusing
on techniques able to scale up to the size of the dataset, traditional
computer vision techniques could be applied on the results obtained
in order to achieve better effectiveness. Given this considerations, we
decided to report the probability 𝑝 of finding an image of the same
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object within the first 𝑟 results. For 𝑟 = 1, 𝑝 also equals the accuracy
of a classifier that recognizes the query inscription as the most similar
that have been found.

For each technique, we report the probability 𝑝 of finding an image
containing the same inscription given as query between the first 𝑟 re-
sults varying 𝑟 between 1 and 100. Results are reportedwith the 𝑟 values
on a logarithmic scale.

A more common measure of effectiveness is mean-Average Preci-
sion (mAP). In this case, not only the first relevant image but all the
images associated with the query are considered. This measure reveals
how good is the approach in reporting the related images in the top
positions of the result list.

6.4.3. Experimental Setup
We extracted SIFT from images using the OpenCV library.3 The BoF
and VLAD approaches have been implemented by the NetworkedMul-
timedia Information Systems Laboratory of ISTI-CNR in Java as part of
theVisual InformationRetrieval library publically available onGitHub.4

Given an image, thousands of local features are extracted. In our
case, we obtained an average of 1591 SIFT per image. However, the fact
that some of them refer to bigger regions than others allows to select
a subset of local features that are in principle more relevant [Amato et
al. 2011]. Thus, in the experiments we also tried to reduce the number
of local features selecting only the most important ones up to about
250 local features per image. In the following, we refer to this second
approach as reduced-keypoints. We tested all the approaches both on
the whole extracted local features and on the ones obtained filtering by
region size.

3 http://opencv.org/
4 https://github.com/ffalchi/it.cnr.isti.vir

http://opencv.org/
https://github.com/ffalchi/it.cnr.isti.vir
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6.4.4. Results
6.4.4.1. Bag-of-Features

Fig. 6.2. BoF cos TF-IDF Fig. 6.3. BoF cos TF-IDF reduced-keypoints

Results in Fig. 6.2 have been obtained using the BoF feature ap-
proach using the cosine TF-IDF similarity measure, varying the size
of the vocabulary between 10k and 400k. As expected, the larger the
vocabulary the better the results. However, differences between 200k
or 400k are only marginal. Thus, we did not tested larger vocabularies.

In Fig. 6.3, we report the same type of results considering only the
most important local features. Results show that the SIFT selection
(reduced-keypoints in the figures) is useful.

6.4.4.2. VLAD

Fig. 6.4. VLAD Fig. 6.5. VLAD reduced-keypoints

In Fig. 6.4 and 6.5, we report the results obtained by the VLAD
approach varying the size 𝑘 of the codebook between 32 and 256 using
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all the extracted SIFT and the reduced ones respectively. It is interesting
to see that the SIFT selection is useful when 𝑘 is higher and 𝑟 is smaller.
In the other cases it can even decrease the quality of the results.

Considering that we are more interested on small 𝑟, which means
having relevant images on the very first positions, the overall best
results are the ones obtained for 𝑘 = 256 and reducing number of local
features.

Fig. 6.6. VLAD-PCA, k = 128
.

Fig. 6.7. VLAD-PCA, k = 128 reduced-
keypoints

We also tried to apply Principal Component Analysis (PCA) on the
VLAD vectors as in [Jégou et al. 2010], especially for trying to reduce
the complexity of the comparison. We then selected 𝑘 = 128 and
applied PCA in order to reduce the dimensionality of the vector (16,384).
Results are reported for VLAD vector reduced to 2048, 512 and 64
dimensions. Unfortunately, the dimensionality reduction significantly
reduce the quality of the results.

6.5. BoF with Geometric consistency checks
All previously reported results have been obtained using techniques

that are not able to verify geometrically the matching between any two
images. In fact, aggregating local descriptors in a compact represen-
tation typically results in lost of the geometric information related to
each single local feature. However, while with the VLAD approach is
impossible to retain the keypoints location, the BoF has been extended
in order to maintain and using the geometric information even if it
results in a much higher search cost [Philbin et al. 2007]. In this section,
we report the results obtained using BoF in conjunction with geome-



126 Information Technologies for Epigraphy and Cultural Heritage

Fig. 6.8. BoF RANSAC Fig. 6.9. BoF RANSAC, reduced-keypoints

try consistency checks performed using RANSAC and searching for a
Homography transform.

The results reported in Fig. 6.8 and Fig. 6.9 reveal that, in this case,
the keypoints reduction results in a significantly loss of effectiveness.
The comparison between the results in Fig. 6.8 with the ones reported
on previous sections suggests that RANSACdoes improve effectiveness
with respect to BoF with cosine TF-IDF similarity, but also that the best
results that can be obtained with VLAD are not paired.

It is worth to mention that this approach is less efficient and cannot
be indexed, even if some approximation have been proposed in the
literature to this scope.

6.6. Comparison
In Tab. 6.1, we summarize the results obtained, ordered with respect
to the mAP quality measure. Only the best approaches are shown. In
the first column, we report a brief text about the approach. In the
second column, the average number of SIFT considered is shown (i.e.,
235 when local features reduction was applied and 1,591 otherwise).
The third column reports the number of words used. While the words
have been selected both for BoF and VLAD using 𝑘-means, their use is
very different. Thus, in the “bytes” column, we computed the average
size in bytes of the resulting representation. As quality measures, we
used the probability 𝑝 of having at least one related image between the
first 𝑟 results for 𝑟 = 1, 10, 100 and the mAP.

In case we use these approaches to recognize the query image rely-
ing on the nearest image in the dataset, the best approach is the VLAD
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Approach avg
SIFTs

code
book
size

Bytes p
𝑟=1

p
𝑟=10

p
𝑟=100

mAP

VLAD 235 256 131,072 .69 .74 .84 .52
BoF / RANSAC 1591 200,000 19,092 .66 .70 .74 .52
BoF / cos TF-IDF 235 400,000 940 .64 .76 .87 .51
VLAD 235 128 65,536 .64 .73 .87 .49
BoF / RANSAC 1591 100,000 19,092 .64 .71 .77 .50
BoF / RANSAC 1591 400,000 19,092 .64 .66 .67 .49
BoF / cos TF-IDF 235 200,000 940 .60 .71 .81 .46
VLAD 1591 256 131,072 .56 .71 .90 .42
VLAD 1591 128 65,536 .56 .69 .87 .41
BoF / cos TF-IDF 235 100,000 940 .56 .69 .79 .42
VLAD 235 64 32,768 .53 .70 .86 .40
VLAD 1591 64 32,768 .50 .61 .79 .37
VLAD-PCA
(d’=512)

1591 128 2,048 .44 .59 .79 .37

Tab. 6.1. Comparison of results obtained by the overall best approaches ordered by mAP

for a codebook size of 256 and selecting the 250 most relevant local
features. In this case, the accuracy obtained is .69. The second best is the
BoF approach in conjunction with RANSAC. However, this approach
is not scalable and its effectiveness would not justify the extra cost in
terms of efficiency. The more traditional BoF-cos TF-IDF approach
obtained good results when a large codebook (i.e., 400k) was used
(as expected). It is interesting to note that this approach outperforms
VLAD for 𝑟 = 10, 100. Given that recent works as [Amato, Bolettieri,
et al. 2013] have shown that VLAD can bemore efficiently indexed than
BoF, still VLAD is preferable.

6.7. Conclusions and Future Work
In this work, we tested state-of-the-art object recognition techniques on
a inscriptions dataset consisting of 17,155 photos. The best accuracy
was obtained by using the VLAD approach that has been recently
proposed for performing object recognition on a large scale. Surpris-
ingly, even the BoF approach in conjunction with geometry consistency
checkswas not able to outperform the VLAD representation that can be
also more efficiently indexed than BoF [Amato et al. 2013].

The obtained accuracy was of .69, which is good considering the
difficulties of the task and the few images available for each inscription
in the dataset. In fact, the dataset consists of 17,155 photos related
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to 14,560 inscriptions. This results in most of the inscriptions been
represented by only one or two photos. However, we plan to improve
this results performing re-ranking of the images obtained using these
scalable techniques performing direct local features matching. To this
goal, we also reported the probability of having a relevant images
between the retrieve images. The results show that it is possible to have
a relevant image between 100 retrieved ones with probability .90 using
the VLAD approach with a codebook of size 256 and filtering the SIFT.
Thus, we plan to try binary local features and other techniques in order
to improve the obtained .69 accuracy up to the .90 obtainable, in theory,
by re-ranking the 100 obtained using VLAD.
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