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Abstract—Emergent phenomena occur due to the
pattern of non-linear and distributed local interac-
tions between the elements of a system over time.
An example of such phenomena is the spontaneous
self-organisation of drinking parties in the squares
of cities in Spain, also known as “El Botellón” [1].
The emergence of self-organisation in [1] was shown
to depend critically on the chat-probability, i.e. the
probability that a person finds someone to chat with
in a square of the city. We consider a variant of “El
Botellón” in which this probability is instead defined
based on the socialisation level. For this variant it is
possible to derive the mean field limit and perform a
stability analysis of the related ODE. We also provide
a process algebraic model of “El Botellón” and show
that the phase plots of the ODE derived from the
latter correspond very well to the mean field limit
even for finite though relatively large populations.

Keywords-Fluid flow; process algebra; crowd dy-
namics; self-organisation

I. INTRODUCTION

This paper revisits the case of self-organisation
of crowds in a city as described by Rowe and
Gomez in [1]. Their work was inspired by a
typical social phenomenon observed in Spanish
cities, on summer nights, called “El Botellón”,
when crowds of youngsters wander between city
squares in search of a party. Such self-organising
parties sometimes lead to heavy drinking and noisy
behaviour until late at night. Predicting when and
where a large party would take place turned out to
be suprisingly hard. The aim of the work by Rowe
and Gomez was to gain insight into the general
principles due to which parties self-organise, ab-
stracting from specific details of individual cases.
To that purpose they studied an agent based model
of crowd movement under various assumptions
about the likelihood that people remain in a square.
In their work, agents follow two basic rules. The
first rule defines when agents remain in a square,
which depends on the “chat-probability”, i.e. the
likelihood to meet someone in the square to chat

with. The second rule defines how agents move be-
tween squares. By developing an analytical model,
they determined a threshold of the chat-probability
below which people are freely moving through the
city and above which large crowds start to form.
Their theory has been validated by a simulation of a
multi-agent model for a ring topology of 4 squares
and up to 80 agents. The value of the threshold is
n/N , where n is the number of squares and N the
number of agents.

An alternative way to model and study the same
crowd behaviour was proposed in [2]. In that work
a fluid flow approximation, i.e. a deterministic
reading of the average behaviour of the system,
is studied starting from a formal process alge-
braic model in the Bio-PEPA language [3]. Models
in Bio-PEPA are amenable to several forms of
analyses, among which simulation and fluid flow
analysis, which facilitate the comparison of the
analysis results. In [2] a very good correspondence
was found between the simulation results and a
computationally much more viable fluid flow ap-
proximation. In particular, it was shown that the
fluid approximation can be used efficiently to ex-
plore at which critical value of the chat-factor c the
phase shift occurs between a uniformly distributed
dynamic population to one in which the population
gathers in a single square. Moreover, an analytical
justification was provided for this correspondence
result. Unfortunately, the limit behaviour of that
model, a model in which N tends to infinity, is
dependent on N due to the fact that the chat
probability is kept constant. In that case the model
has vanishing drift, which makes it not easy to
exploit.

An alternative model can be obtained consider-
ing the chat probability as the fraction of the so-
cialisation level (i.e. the average number of friends
people have) w.r.t. the total population walking
around in the city. This assumption is justified by
the fact that in general people have a fixed number



of friends and meeting them (and thus remaining
in a square to chat with them) gets more and more
unlikely when the total population that is walking
around in the city increases. This is the scenario
addressed in the present paper. It is shown that
this model has in fact an interesting mean field
limit that leads to different sets of stationary points
with different stability properties when considering
the socialisation level as a variable of the model.
The stability analysis of the limit behaviour of
this model is addressed and compared with the
analysis results of a Bio-PEPA model of the same
scenario for a fixed and finite population. The
study provides a contribution towards addressing
the question whether a fluid flow approximation,
such as that underlying the process algebra Bio-
PEPA, can provide an alternative, and computa-
tionally more viable, way to study emergent, non-
linear, crowd behaviour such as that explored in [1]
where simulation was used instead.

The outline of the paper is as follows. Section II
recalls the crowd model by Rowe and Gomez [1].
Section III introduces an alternative crowd model
based on the population’s socialisation level. Sec-
tion IV introduces a Bio-PEPA version of the
crowd model for a city with three squares and
Section V presents a fluid flow analysis for a
chosen population level. Section VI presents a
mean field analysis of the crowd model followed
by a stability analysis. In Section VII the results of
the mean field analysis are compared with the fluid
flow results obtained from the ODE underlying the
Bio-PEPA model.

II. ROWE AND GOMEZ’ MODEL OF CROWD
DYNAMICS

In this section we briefly recall the model of
movement of crowds between squares in a city as
presented by Rowe and Gomez in [1]. Assume a
city with a general topology, with a finite set of
squares i ∈ {1, .., n}. Let Q be the n × n routing
matrix, i.e. Qi,j is the probability that a person
moves to square j, given that she decided to leave
square i. We assume Q is symmetric, i.e. Qi,j =
Qj,i, so Q is a stochastic and symmetric matrix. It
is further assumed that Q is irreducible (this is not
a limitation since otherwise the city can be split
into its connected components.)

Let us further assume that people’s behaviour is
modelled by “agents” that are following a simple
set of rules. Agents are located in squares. The
number of agents in square i at time t, with t
representing discrete time steps, is represented by
pi(t). The state of the system at t is given by the

vector p(t) = (p1(t), p2(t), . . . , pn(t)). The total
number of agents N is constant, so at any time
t > 0 we have: N =

∑n
i=1 pi(t).

At every step each agent tries to find a partner
to chat with. If this succeeds it stays where it is;
else, it moves to some other square. It is assumed
that the probability of the latter is (1−c)pi−1 when
this agent is at square i, and pi > 0 is the number
of agents currently at square i. The parameter c
(representing the chat probability, 0 ≤ c ≤ 1) is
the probability that an agent finds a partner to talk
to and thus remains in the square. Note that when
there is only one agent in the square, it decides to
leave with probability 1, since there is nobody else
to talk to.

Let MN = (MN
1 (t), ...,MN

n (t)) be the occu-
pancy measure of sites, assuming the population is
constant. This is a discrete time Markov chain with
drift given by

E
(
MN
i (t+ 1)−MN

i (t)
∣∣MN (t) = m

)
=

−fNi (t) +
∑
j

fNj (t)Qj,i (1)

where fNi (t) = mi(1 − c)Nmi−1. Let fN (t) =
(fN1 (t), . . . , fNn (t)). The expected distribution of
agents over squares at t+ 1 can be defined as:

mN (t+ 1) = mN (t)− fN (t) + fN (t)Q (2)

From equation (2) it follows that a stationary
point is reached when fN (t) = fN (t)Q. In other
words, when the number of people entering a
square is equal to the number leaving the square.
Rowe and Gomez show that there are two pos-
sibilities for such a stationary point. In one case
the agents freely move between squares and their
distribution is proportional to the number of streets
connected to each square. In the second case agents
gather in large groups in a small number of squares
corresponding to emergent self-organisation of par-
ties. Which of the two situations will occur depends
critically on the value of the chat probability c.
When all squares have the same number of neigh-
bouring squares a phase shift occurs at about c =
n/N where n is the number of squares and N the
number of agents. For c < n/N people freely move
between squares whereas for c > n/N agents self-
organise into large groups. Stochastic simulation
of the model confirms in an empirical way that
this estimate for the critical value c = n/N is
quite accurate when the population is large enough
where large means about 60 agents or more in a
4-square topology.

The probability (1 − c)pi−1 can also be inter-
preted as a rate leading to a CTMC model. In this



case, each agent will move asynchronously. The
rate at which an agent in square i will leave that
square is pi(1− c)pi−1, which, expressed in terms
of occupancy measure becomes mi(1 − c)Nmi−1.
The drift of the normalised model with N agents in
this case is dependent on N . For example, the drift
of the CTMC model for the occupancy measure m1

for square 1 assuming n = 3 is:

−m1(1− c)N ·m1−1 + 0.5m2(1− c)N ·m2−1

+0.5m3(1− c)N ·m3−1 (3)

For fixed c, letting the state space
E be the unit simplex in ∆3 ={
x ∈ R3 : xi ≥ 0 and

∑
i xi = 1

}
, we have

that

lim
N→∞

sup
m1,m2,m3∈E

||FRG(N)(m1,m2,m3)|| = 0

so that the drift FRG(N) of the Rowe and Gomez
model with N agents converges uniformly to the
constant function yielding 0 for each point in E.
Hence, the fluid limit x(t) of the sequence is the
not very informative constant function x(t) = x0

where x0 is the initial value.
Fortunately, as shown in [2], there is a reasonable

agreement between the ODE and CTMCs for suf-
ficiently large N . Indeed, fluid flow approximation
results x(N)(t), i.e. the ODE solution for popula-
tion level N , can still be used in this context for two
complementary reasons: 1) x(N)(t) is, in any case,
an approximation of the average of the stochastic
process (see [2]); 2) deterministic approximation
theorems prove the convergence essentially by
showing that limN→∞X(N)(t) = x(N)(t) and that
limN→∞ x(N)(t) = x(t) where X(N) denotes the
CTMC model for population size N and x(t) the
solution of the limit ODE (this is a consequence of
the scaling hypothesis that the exit rate is bounded
for all N ; hence one can always approximate the
CTMC with the solution of the ODE of level N ,
if N is sufficiently large.)

The solutions x(N)(t) for different population
levels N form a semantic interpretation of the
stochastic process algebra Bio-PEPA. In [2] this
process algebra has been used to specify, in a
compositional way, the crowd model by Rowe and
Gomez.

III. A SOCIALISATION LEVEL BASED CROWD
DYNAMICS MODEL

The probability to meet a friend in a crowded
city is in general not the same as the probability
to find a friend when it is less crowded. People
tend to have a fixed number of friends given a city

population, and the larger the number of people
walking around, the more of them will turn out
not to be one of your friends. This consideration
leads to an alternative crowd model in which the
chat probability is defined as c = s/N , where s
is the level of socialisation of the population, i.e.
the average number of friends that people have.
Using this alternative definition of c the ODE for
population level N of this new model is:

dxi
dt

= −xi(1− s/N)Nxi−1 +∑
j

xj(1− s/N)Nxj−1Qj,i (4)

The above ODE forms also the fluid flow interpre-
tation of a Bio-PEPA model of this new scenario.
The Bio-PEPA model and its analysis are shown
in the following sections. Note, however, that this
model has also an interesting fluid limit. For N
going to ∞ the right hand side of equation (4)
becomes:

−xie−sxi +
∑
j

xje
−sxjQj,i (5)

It follows from this and for example from [4] that
MN has a non-trivial fluid limit x(t), given as the
solution of the ODE

dxi
dt

= −xie−sxi +
∑
j

xje
−sxjQj,i (6)

This is a non linear ODE, with
solutions in the unit simplex ∆n =
{x ∈ Rn : xi ≥ 0 and

∑
i xi = 1} if the initial

condition is in ∆n. This provides an interesting
occasion to compare the approximation results
obtained with the Bio-PEPA model with those
derived analytically. We will show that the
approximation is actually rather good even for
relatively small population sizes. This insight
could be very helpful in the analysis of non-linear
large-scale interaction systems with a much
less regular structure and for which it would
be extremely hard to find tractable closed-form
expressions for the fluid limit or when the fluid
limit is non-informative.

IV. BIO-PEPA CROWD MODEL

Bio-PEPA [3] is a process algebraic language
that has recently been developed for the modelling
and analysis of biochemical systems. We use this
language to present the crowd model and explain
the relevant language constructs on the fly.



Let us consider a small ring topology with 3 city
squares, A, B and C, allowing bi-directional move-
ment between squares. In Bio-PEPA the squares are
modelled as locations called sqA, sqB and sqC.

The next step is the definition of the model pa-
rameters. Parameter c defines the chat-probability
and the parameter d the degree or number of streets
connected to a square. In the considered topology
d = 2 for each square. The chat-probability is
defined as the fraction of the socialisation factor
s w.r.t. the total population N , i.e. c = s/N .

The actions modelling agents moving from
square X to square Y are denoted by fXtY . The
associated functional rate for fAtB with P@sqA
denoting the population in square A at time t is
defined as:

fAtB = (P@sqA ∗ (1− c)(P@sqA−1))/d;

the other rates are defined similarly.
The behaviour of a typical agent moving be-

tween squares is modelled by sequential compo-
nent P . For example, fAtB[sqA → sqB] � P
models that an agent present in square A moves to
square B according to the functional rate defined
for the action fAtB .

P =
fAtB [sqA→ sqB]� P + fBtA[sqB → sqA]� P+
fAtC [sqA→ sqC]� P + fCtA[sqC → sqA]� P+
fBtC [sqB → sqC]� P + fCtB [sqC → sqB]� P ;

The operator “+” expresses the choice between
possible actions. The notation α[I → J ] � S is a
shorthand for the pair (α, 1)↓S@I and (α, 1)↑S@J
that synchronise on action α. The symbol ↓ indi-
cates a reactant which will be consumed in the
action, ↑ a product which is produced as a result of
the action. The prefix term (α, κ) op S@l is used
to specify that α is performed by S in location
l. The value κ captures the multiples of an entity
involved in an occurring action.

Finally, the model component defines the initial
conditions of the model, i.e. in which squares
the agents are located initially, and the rela-
tive synchronisation pattern. If, initially, there are
100 agents in square A this is expressed by
P@sqA[100]. The fact that moving agents need
to synchronise follows from the definition of the
shorthand operator →.

(P@sqA[100]��
∗

P@sqB[0])��
∗

(P@sqC[0])

The total number of agents P@sqA + P@sqB +

P@sqC is invariant and amounts to 100 in this

specific case. The occupancy measure of the pop-
ulation in square A can be defined as PsqA =
P@sqA/N and similarly for the other squares.

V. BIO-PEPA FLUID APPROXIMATION

This section presents a selection of the analysis
results for the Bio-PEPA model of the previous sec-
tion for N = 90001. The figures below report both
analysis via Gillespie stochastic simulation [6], and
fluid flow analysis based on the adaptive step-size
5th order Dormand-Prince ODE solver [7]2.

Fig 1(a) shows a single simulation trajectory
(G1) and a fluid flow approximation (ODE) of
the fraction of agents in each square for s = 0.1
with initially 1/3 of the population in square A,
2/3 in square B and none in square C. Fig. 1(b)
shows similar analysis for s = 2.76. Note that the
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(a) Stochastic Simulation and fluid flow trajectory for s =
0.1
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(b) Stochastic Simulation and fluid flow trajectory for s =
2.76

Fig. 1. Results for n = 3, N = 9000, A = 1
3

, B = 2
3

and
C = 0 initially.

simulation results and the fluid approximation in

1This number is just arbitrary; fluid approximation can be
applied for any desired large number of agents since the
performance of this technique is insensitive to the number of
copies of agents involved. For a discussion see for example [5].

2All analyses have been performed with the Bio-PEPA
Eclipse Plug-in tool [8] on a Macintosh PowerPC G5.



Fig. 1 (a) and (b) show very good correspondence
for this non-linear model. This correspondence
becomes even better when the average of multiple
stochastic simulation runs is considered instead of
single runs.

A phase plot of the system for different values
of s gives a more complete overview. In Fig. 2(a)
the ODE trajectories of the occupancy measures
of square A (x1-axes) w.r.t. square B (x2-axes)
are shown for a grid of different initial values of
the occupancy measure in these squares and for
s = 0.1 and N = 9000. The trajectories are the
solution of the following ODE (for i ∈ {1, 2, 3}):

dxi
dt

= −xi(1− s/N)Nxi−1 +∑
j

xj(1− s/N)Nxj−1Qj,i (7)

where x1 = PsqA, x2 = PsqB and x3 = PsqC.
This is the same ODE as that obtained via the
Bio-PEPA semantics for this crowd model. The
phase plots show a number of trajectories of the
ODE for a particular value of s with initial values
of the population fractions indicated by a small
circle. The phase plot in Fig. 2(a) shows clearly
that all trajectories lead to a single point in which
x1 = 1

3 and x2 = 1
3 and consequently, since the

population is fixed, x3 = 1
3 . It is easy to observe

that for this value of s the number of people in
the three squares is equal leading to a dynamic,
stationary situation, independently from the initial
distribution. The phase plot for s = 5.0 in Fig. 2(b)
shows a completely different scenario. In this case
the area of possible initial values for x1 and x2
turns out to be divided into three different sub-
areas, so called basins of attraction. The population
in this case will gather in one of the three squares
after some time and the particular square in which
they will gather depends on the initial population
distribution3.

In the next section an analytical stability analysis
is provided of the limit ODE of the model, i.e. for
N to infinity. The results are compared with those
obtained with the ODE of Eq.(7) underlying the
Bio-PEPA model.

VI. STABILITY ANALYSIS OF THE LIMIT ODE

The ODE in Eq.(6) in Section III is non-linear. It
is possible to establish its set of stationary points
and study their nature in terms of local stability.
To be more precise, we will study a family of

3The phase plots have been obtained via the Bio-PEPA plugin
export of the model to SBML and from there translated into
Octave code via the SBFC converter package [9].

differential equations considering the socialisation
factor s as a parameter of the ODE. We will first
address the computation of stationary points and
the phase space of the limit ODE. We then analyse
the nature of the stationary points and show how
they change depending on the value of s presenting
a bifurcation diagram. Finally, we will compare the
results of the limit ODE with xN (t), the solution
of Eq.(7), i.e. the ODE for a particular size N of
the population.

A. Stationary Points

Let F(s) be the set of stationary points of the
ODE that are in the simplex ∆n for socialisation
factor s. Such points are defined by

−z + zQ = 0 (8)

with zi
def
= xie

−sxi and z = (z1, ..., zn). Since
Q is irreducible and stochastic, this implies that z
is proportional to (1, ..., 1), i.e. there exists some
λ ≥ 0 such that zi = λ for all i, which is equivalent
to

xie
−sxi = xje

−sxj ∀i, j (9)
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Fig. 2. Phase plots Bio-PEPA model
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Thus F(s) is the set of x ∈ ∆n that satisfy
Eq.(9). It contains

(
1
n , ...,

1
n

)
. Let us now study

F(s) in more detail. To this end, let us introduce
the function ϕ, defined as follows. Consider first
the function R+ → R, x 7→ xe−x; it is increasing
on [0, 1] and decreasing on [1,+∞). Thus for every
x ≥ 1, there exists a unique y ∈ (0, 1] such that
xe−x = ye−y . We call ϕ the function that maps x
to y (see Figure 3). In other words, ϕ is defined
on [1,+∞) by

ϕ(x) = y ⇐⇒ x ≥ 1, y ≤ 1 and xe−x = ye−y

Note that the function ϕ can also be expressed by
means of Lambert’s W0 function using the identity

ϕ(x) = −W0

(
−xe−x

)
∀x ≥ 1

It can easily be seen that limx→∞ ϕ(x) = 0,
ϕ(1) = 1. Differentiating both sides of the equation
xe−x = ϕ(x)e−ϕ(x) we obtain that ϕ′(x) = ((1−
x)e−x)/((1−ϕ(x))e−ϕ(x)). We observe that ϕ(x)
is decreasing for x ≥ 1 and limx→1+ ϕ

′(1) = −1.
for large x we use the approximation ϕ(x) ≈
xe−x, which can be derived from the value of the
derivative in 0 of W0.

With elementary but lengthy calculus, we can
show that an element x of F(s) must satisfy

xi =
α

s
for i 6∈ K (10)

xi =
1

s
ϕ(α) for i ∈ K (11)

1 ≤ α, α ∈ R (12)
K ⊂ {1, ..., n} (13)
K = card(K) (14)
s = (n−K)α+Kϕ(α) (15)

We are thus interested in solving Eq.(15) for α,
where s is given. More precisely, with more work
we can say:

Theorem 6.1:
(
1
n , ...,

1
n

)
is a stationary point of

the ODE. Any other stationary point, if any exists,
is obtained by solving the following problem:
• Find an integer K ∈ {1, ..., n− 1} and a real

number α ≥ 1 that solve Eq.(15);
For each solution (K,α), and for any set of sites K
of cardinality K, there is a stationary point defined
by xi = α

s for all i ∈ K and xi = 1
sϕ(α) for i 6∈ K.

Note that the function [1,∞) → R, α 7→ (n −
K)α+Kϕ(α) always attains its infimum. Let

s∗(n,K)
def
= min

α≥1
(n−K)α+Kϕ(α)

Corollary 6.1: If s < minK=1...n−1 s
∗(n,K),

there is no stationary point other than
(
1
n , ...,

1
n

)
;

else there are several other stationary points.

B. Example: model with three squares

In this section (and in the following ones), we
focus on the model with n = 3 sites and with a
routing matrix sending a person with equal proba-
bility to other sites:

Q =

 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0


We plot the function α 7→ (3−K)α+Kϕ(α) (right
handside of Eq.(15)) in Figure 4 for K = 1 and 2
and we see that s∗(3, 1) = 3 and that the minimum
of (3−K)α+Kϕ(α) is attained for α ≈ 1.6055
and s∗(3, 2) ≈ 2.7456.

Some of the solutions of equation Eq.(15) lead
to stationary points of the form (v, v, v) with
v = 1

n = 1
3 , i.e. a stationary point with a

symmetric distribution of people among the three
squares. For this reason we call such a solution
of equation Eq.(15) ‘symmetric’. Other solutions
bring to stationary points of the form (x1, x2, x3)
such that there exists i, j = 1 . . . 3, i 6= j with
xi = xj and x1+x2+x3 = 1, with xi ∈ [0, 1], e.g.
(v, v, 1 − 2v) for appropriate v. We call any such
a solution of equation Eq.(15) ‘asymmetric’, since
they lead to stationary points with an asymmetric
distribution of people in the squares. Below we
provide a systemic analysis of Eq.(15) based on
the value K.

Case K = 0: Eq.(15) reduces to 3 · α = s.
Knowing that α ≥ 1 we can see that solutions
only exist when s ≥ 3. In that case there is
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Fig. 4. The right-handsides of Eq.(15) ( n = 3 and K = 1, 2).

always exactly one solution, which is symmetric.
The associated stationary point is ( 1

3 ,
1
3 ,

1
3 ).

Case K = 1: Inspecting function y = 2α+ϕ(α)
(see Fig. 4) we have that for s ≥ 3 there is one
asymmetric solution for α. This leads to 3 similar
stationary points in which always two squares have
the same occupancy measure. For 0 ≤ s < 3 there
are no solutions. In the special case in which s = 3
the three stationary points collapse into the single
point ( 1

3 ,
1
3 ,

1
3 ).

Case K = 2: Inspecting function y = α+2ϕ(α)
(see Fig. 4) we have that for s < 2.7456 there
is no solution. For s = 2.7456 there is exactly
one asymmetric solution leading to 3 stationary
points. For 2.7456 < s ≤ 3 there are 2 asymmetric
solutions for α leading to two groups of 3 similar
stationary points. Note that for the special case
s = 3.0 one of the two asymmetric solutions
collapse into the single point ( 1

3 ,
1
3 ,

1
3 ). For s > 3

there is 1 asymmetric solution leading to 3 similar
stationary points.

Case K = 3: Eq.(15) reduces to ϕ(α) = s
3 . We

know that ϕ(α) ∈ (0, 1], so for 0 < s ≤ 3 there
exists one symmetric solution, leading to stationary
point ( 1

3 ,
1
3 ,

1
3 ), and for s > 3 there is no solution.

Note that the solution for s = 3.0 coincides with
the solution for Case K = 0.

C. Stability analysis of stationary points

In order to study the stability of the stationary
points, we will investigate the sign of the real part
of the eigenvalues of the Jacobian matrix, evaluated
on such stationary points. We recall that, if the

real part of all eigenvalues is negative, then the
stationary point is asymptotically stable, while if
at least one eigenvalue has a positive real part,
then the point is unstable. Notice that in the other
cases (i.e. in presence of eigenvalues with real part
equal to zero), this approach is not informative (see
e.g. [10]).

In order to simplify the following calculations,
we introduce the matrix R = (rij)i,j≤n, with rij =
Qij for i 6= j and rii = −1, so that R = Q − I .
Recall that the vector z = z(x) is defined by zi =
xie
−sxi . We can write the limit system of ODE of

Eq.(6) now as

dx
dt

= zR = F(x)

Furthermore, we let ∂zi
∂xi

= (1 − sxi)e−sxi = hi.
Clearly, ∂zi

∂xj
= 0 for i 6= j. Since

∑
i≤n xi = 1 we

can reduce the dimension of the system by one let-
ting xn = 1−

∑
j<n xi. Let x = (x1, . . . , xn−1, 1−∑

j<n xi) and x̂ = (x1, . . . , xn−1) and let F̂(x̂) =
(F1(x), . . . , Fn−1(x)) the so obtained reduced vec-
tor field, defined in the new state space Ê = {x̂ ∈
Rn−1 |

∑
j<n x̂j ≤ 1}.

Computing the Jacobian J of F and Ĵ of F̂, we
obtain for i, j ≤ n:

Jij =
∂Fi
∂xj

= rijhj

and, for i, j < n:

Ĵij =
∂F̂i
∂xj

= rij
∂zj
∂xj

+ rin
∂ρ(zn)

∂xj
=

rij
∂zj
∂xj
− rinρ(

∂zn
∂xn

) = rijhj − rinρ(hn),

where ρ(f) denotes a substitution operator that
replaces occurrences of xn in the formula f by
1−

∑
j<n xi. So, ρ(zn) = zn[xn/(1−

∑
j<n xj)]

and ρ(hn) = hn[xn/(1−
∑
j<n xj)] are equal to zn

and hn after replacing variable xn by 1−
∑
j<n xi.

We will use indifferently ρ(hn) and hn in the
following, whenever this does not cause confusion.

First, we notice that the non-reduced system has
always a zero eigenvalue, as Jni = −

∑
j<n Jji,

and furthermore that any non-null eigenvalue of the
Jacobian of the full system is also an eigenvalue
of the reduced system. In fact, let λ 6= 0 be an
eigenvalue of J and v an eigenvector for λ. Then
λvn = (Jv)n = −

∑
j<n(Jv)j = −λ

∑
j<n vj , so

that vn = −
∑
j<n vj .

Now, call v̂ the n-1-dimensional vector obtained



by removing vn from v. It holds for i < n that

(Jv)i =
∑
j<n

rijhjvj + rinhnvn =∑
j<n

rijhjvj + rinhn(−
∑
j<n

vj) = (Ĵ v̂)i

which shows that any non-null eigenvalue of J
is also an eigenvalue of Ĵ . We are now ready to
provide a characterization of the stability of the
symmetric stationary point xsym = ( 1

n , . . . ,
1
n ). We

can study its stability by computing the reduced
Jacobian Ĵ in xsym.

Letting R̂ = (rij − rin)i,j<n, because in xsym
we have that hi = hj = h for any i, j, it holds that
Ĵ = hR̂. Now, it is easy to check that the non-
null eigenvalues of R̂ coincide with the non-null
eigenvalues of R. Furthermore, if λ is a non-null
eigenvalue of R, then hλ is an eigenvalue of Ĵ . As
R = Q− I , we can observe that if λ is an eigen-
value of Q, then λ − 1 is an eigenvalue of R. By
the Perron-Frobenius and the Sylvester theorems,
all eigenvalues of Q are real and less than or equal
to one. It follows that all non-null eigenvalues of
R̂ are negative (so that xsym is stable) if and only
if h > 0, where h = (1− s

n )e−s/n. Therefore, we
have proved the following

Proposition 6.1: xsym = ( 1
n , . . . ,

1
n ) is stable

for s < n, and unstable for s > n.
For what concerns the stability of xasym ∈ ∆n

for n > 3 things get quite a bit more complicated
and we will deal with these only in the restricted
case of n = 3 in the following example.

D. Example: stability of stationary points

We turn now to analyse in more detail the sta-
tionary points of the model with three squares. We
know via Proposition 6.1 that the point ( 1

3 ,
1
3 ,

1
3 )

is a stationary point. Furthermore, following The-
orem 6.1, we have additional stationary points,
of the form (ϕ(α)s , ϕ(α)s , αs ), for α a solution of
2ϕ(α) + α = s, and (αs ,

α
s ,

ϕ(α)
s ), for α solution

of ϕ(α) + 2α = s (and all their variants obtained
by permutation). These correspond to the cases
K = 2 and K = 1, respectively, mentioned in
Section VI-B.

Using the notation of the previous sections,
recalling that hi = (1−sxi)e−sxi , we can compute
the Jacobian of the reduced model, which is:

Ĵ =

(
−h1 − 1

2h3
1
2h2 −

1
2h3

1
2h1 −

1
2h3 −h2 − 1

2h3

)
We can then compute its two eigenvalues letting
det(Ĵ − λ · I) = 0, where I denotes the 2

dimensional identity matrix, and solving for λ. The
eigenvalues are

λ1,2 = −1

2
(h1 + h2 + h3)±

1

2

√
(h1 + h2 + h3)2 − 3(h1h2 + h1h3 + h2h3)

Now, we can specialize this formula for the
stationary points of the system. From Proposi-
tion 6.1, we know that the symmetric stationary
point xsym = ( 1

3 ,
1
3 ,

1
3 ) is stable for s < 3 and

unstable for s > 3. Moreover, for s = 3 both
eigenvalues are 0, so for s = 3 we have a phase
shift.

Consider now an asymmetric stationary point.
All these points have two coordinates equal among
them and the other different. W.l.g, we can always
assume that the first and the second coordinate are
equal, hence we let h1 = h2 = β and h3 = γ. We
obtain the following eigenvalues:

λ1 = −1

2
β − γ λ2 = −3

2
β

Assume now the equilibrium is of the form
(ϕ(α)s , ϕ(α)s , αs ), with β = (1 − ϕ(α))e−ϕ(α) and
γ = (1−α)e−α. As ϕ(α) ≤ 1, we have that β > 0,
and so λ2 ≤ 0 in all such points. As for λ1, we
can observe that the condition λ1 < 0, after some
algebra, is equivalent to

(1− α)e−α

(1− ϕ(α))e−ϕ(α)
> −1

2

Differentiating both sides of the equality
αe−α = ϕ(α)e−ϕ(α), we obtain that the left hand
side of the previous condition is equal to ϕ′(α).
Now, ϕ′(α) increases monotonically to zero, and
it is equal to -1 for α = 1. Furthermore, it
equals − 1

2 for α = 1.605654, i.e. the point
minimising 2ϕ(α) + α, the equation defining the
stationary points under examination. In particular,
α = 1.605654 corresponds to the value s =
2.745644, which is the minimum value of s for
which stationary points of the form (ϕ(α)s , ϕ(α)s , αs )
exist. Now, recall that the equation 2ϕ(α)+α = s,
has one solution for s = 2.745644, two asym-
metric solutions for 2.745644 < s ≤ 3, and one
asymmetric solution for s > 3 (see Case K = 2
in Section VI-B). For 2.745644 < s ≤ 3, the
two solutions for α are one below and one above
1.605654 thus leading to λ1 > 0 and λ1 < 0,
respectively. It follows that one stationary point is
unstable (a saddle point) because one eigenvalue
has a negative real part and the other a positive one.
The other stationary point is stable, because both
eigenvalues have a negative real part. In particular,



the saddle node is the point closer to ( 1
3 ,

1
3 ,

1
3 ).

For what concerns the situation for s > 3 the only
solution for α is always above 1.605654 leading to
negative eigenvalues and thus stable points.

As for s = 2.745644 the situation is more
complicated because in that case λ1 has a zero
real part, which means that we are dealing with
a degenerate case which would require further
analysis.

Finally, we consider stationary points of the form
(αs ,

α
s ,

ϕ(α)
s ), that exist only for s > 3. In this case,

β ≤ 0, and so λ2 ≥ 0: the point is unstable. For
completeness, observe that the condition λ1 < 0 is
equivalent to ϕ′(α) > −2, which is always true, as
−1 ≤ ϕ′(α) < 0. It follows that these stationary
points are always saddle nodes.

We can summarise the previous discussion in
the bifurcation diagram shown in Fig. 5. On the
x-axes the value of s is shown. On the y-axes the
occupancy measure of x1 (which happens to be
equal to that of x2 for the stationary points con-
sidered). The diagram shows that for s < 2.7456...
there is indeed only one stable stationary point at
( 1
3 ,

1
3 ,

1
3 ). Interesting behaviour can be observed

in the phase transition from a situation with this
one single stable stationary point to situations with
three locally stable stationary points (and several
locally unstable ones). For socialisation factors of
between 2.7456 and 3.0 a striking situation can
be noted in which multiple distributions of the
population can be stable in which the population is
neither uniformly distributed, nor gathering mostly
in one of the three squares, but always distributed
in such a way that two squares have exactly the
same occupancy measure. To have a better vi-

0 2 4 6 8 10
s

0

0.1

0.2

0.3

0.4

0.5

x1
(=

x2
)

x1=x2=x3 (unstable part, ++)
x1=x2!=x3 (unstable, +-)
x1=x2=x3 (stable part, --)
x1=x2!=x3 (stable, --)
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3

Fig. 5. Bifurcation diagram

sual understanding of the dynamics, we present
in Figures 6 and 7 phase plots of the limit ODE
system for s = 0.1 and s = 5.0 (Fig. 6) and
s = 3.0 and s = 2.7456 (Fig. 7, see appendix).
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Fig. 6. Phase plots of limit ODE

On the x-axes the occupancy measure of square 1
is shown whereas on the y-axes that of square 2
is shown. The third square is not shown because
its population can be derived from that in the other
squares. Stationary points are indicated by (red)
crosses. It can be observed that in Fig 6(a) only one
single stationary point at ( 1

3 ,
1
3 ,

1
3 ) is present where

all trajectories are leading to. From the previous
discussion we know that this point is locally stable
and the phase plot confirms this. Fig. 6(b) shows 7
stationary points. For the value of s = 5 the point
( 1
3 ,

1
3 ,

1
3 ) has now become an unstable stationary

point, furthermore there are three locally stable
stationary points close to the three corners of the
diagram, and three unstable stationary points. The
three locally stable points reflect three different sta-
ble situations that can occur, namely that (almost)
all people will eventually end up in one of the three
squares. Which square this will be depends clearly
on the initial distribution of the people over the
squares.



VII. COMPARISON OF THE ODE FOR
POPULATION LEVEL N AND THE LIMIT ODE.

We have studied the stationary points of the
limiting ODE, and we have also observed a close
correspondence between the phase plots (obtained
numerically) of the limit ODE (see Figs. 6 and 7)
and the stationary behavior of the stochastic system
when N is large (see Figs. 1 (a) and (b)). In
particular we see that the stochastic systems tends
to concentrate on one of the stationary points. We
now give a theoretical result that shows that this is
expected in theory.

First note that the stochastic model, where N is
finite, is a continuous Markov chain on a finite state
space; the transition is fully connected, therefore,
by standard Markov chain theory, it has a unique
stationary probability, say $N , which is also its
unique invariant probability and is the limiting
probability distribution for any initial condition.
The question is what becomes $N when N is
large. We do not have a complete answer to this
question, but we can give some partial answer. It
is natural to assume that the mass of $N must
tend to be concentrated on the stationary points
of the ODE, but this is a misconception [4], as
the stationary behaviour of the ODE may not be
concentrated on stationary points (there may be
limit cycles or even chaotic behavior). In our case,
though, we can show the following.

Theorem 7.1: Let $∗ be a probability distribu-
tion on the N -simplex that is a limit of some
subsequence of $N when N → ∞; the limit is
for the usual Prokhorov metric. Then the support
of $∗ is included in the set of stationary points of
the limit ODE. Furthermore, if the limit ODE has
a unique stationary point then $N converges to a
unique distribution, which is the Dirac mass at the
unique stationary point.

The proof of this result relies on the fact that the
stochastic model is reversible, which itself is due
to the fact that the topology matrix Q is symmetric
[11]. We conjecture that the mass of any limiting
probability $∗ must in fact be concentrated on the
stable stationary points, but a proof of this is for
further study. Note that if we focus on the ODE
defined by the Bio-PEPA model at level N , we can
observe that the symmetric point xsym = ( 1

n , ..,
1
n )

is also a stationary state, whose stability can be
analysed as for the limit case. In particular, xsym
is stable for s < N(1− e−n/N ), which returns the
condition s < n in the limit N →∞.

VIII. CONCLUSIONS

We have considered a variant of the crowd
dynamics model by Rowe and Gomez [1] in which
the chat-probability has been defined as the level
of socialisation. For this variant we have analysed
the mean field limit and provided a stability anal-
ysis. We have compared the results of the limit
ODE with the ODE for population level N which
forms the underlying semantic model of a Bio-
PEPA specification of the crowd dynamics. The
conjecture is that the ODE for a sufficiently high
population level N provides a good approximation
of the limit ODE. This conjecture has been partially
proven and partially supported by numerical re-
sults. Our results show that the stationary behavior
can be very different from what was obtained with
previous models; in particular, we find that there
may emerge non-symmetric stationary points in
fully symmetric configurations.

Future work is developing along a few main
directions. Although the simple topology addressed
in this paper, chosen for reasons of validation of
the approach, can be analysed analytically, more
complex topologies and models, addressing issues
such as the relative attractiveness of squares, may
easily turn out to be too complex to be studied
analytically. Fluid flow approximation with Bio-
PEPA and the underlying ODE for population level
N may be an alternative to obtain rather quickly
an approximate insight in the dynamic behaviour
of such more complicated crowd models.
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APPENDIX

A. Bio-PEPA and Fluid Flow Analysis

We briefly recall Bio-PEPA [3], a language that
has recently been developed for the modelling and
analysis of biochemical systems. The main com-
ponents of a Bio-PEPA system are the “species”
components, describing the behaviour of individual
entities, and the model component, describing the
interactions between the various species. The initial
amounts of each type of entity or species are given
in the model component.

The syntax of the Bio-PEPA components is
defined as:

S ::= (α, κ) op S | S + S | C
with op = ↓ | ↑ | ⊕ | 	 | �

and P ::= P ��
L
P | S(x)

where S is a species component and P is a model
component. In the prefix term (α, κ) op S, κ is
the stoichiometry coefficient of species S in action
α. This arises from the original formulation of the
process algebra for modelling biochemical reac-
tions, where the stoichiometric coefficient captures
how many molecules of a species are required for
a reaction. However it may be interpreted more
generally as the multiples of an entity involved in
an occurring action. The default value of κ is 1 in
which case we simply write α instead of (α, κ).
The prefix combinator “op” represents the role of
S in the action, or conversely the impact that the
action has on the species. Specifically, ↓ indicates
a reactant which will be consumed in the action,
↑ a product which is produced as a result of the
action, ⊕ an activator, 	 an inhibitor and � a
generic modifier, all of which play a role in an
action without being produced or consumed and
have a defined meaning in the biochemical context.
The operator “+” expresses the choice between
possible actions, and the constant C is defined by
an equation C=S. The process P ��

L
Q denotes

synchronisation between components P and Q, the
set L determines those actions on which the com-
ponents P and Q are forced to synchronise, with
��
∗

denoting a synchronisation on all common
actions. In S(x), the parameter x ∈ IR represents
the initial amount of the species.

A Bio-PEPA system with locations consists of a
set of species components, also called sequential
processes, a model component, and a context (lo-
cations, functional/kinetics rates, parameters, etc.).
The prefix term (α, κ) op S@l is used to specify
that the action is performed by S in location l.
The notation α[I → J ] � S is a shorthand for



the pair of reactions (α, 1)↓S@I and (α, 1)↑S@J
that synchronise on action α 4. This shorthand is
very convenient when modelling agents migrating
from one location to another as we will see in
the next section. Bio-PEPA is given an operational
semantics [3] which is based on Continuous Time
Markov Chains (CTMCs).

The Bio-PEPA language is supported by a suite
of software tools which automatically process Bio-
PEPA models and generate internal representa-
tions suitable for different types of analysis [3],
[8]. These tools include mappings from Bio-PEPA
to differential equations (supporting a fluid flow
approximation), stochastic simulation models [6],
CTMCs with levelsand PRISM models.

A Bio-PEPA model describes a number of se-
quential components each of which represents a
number of entities in a distinct state. The result of
an action is to increase the number of some entities
and decrease the number of others. Thus the total
state of the system at any time can be represented
as a vector with entries capturing the counts of each
species component (i.e. an aggregated CTMC).
This gives rise to a discrete state system which
undergoes discrete events. The idea of fluid flow
analysis is to approximate these discrete jumps by
continuous flows between the states of the system.

B. Additional phase plots of limit ODE

For s = 2.7456 the phase plot in Fig 7(a)
predicts 4 stationary points. The one at ( 1

3 ,
1
3 ,

1
3 )

is stable, the other three are unstable. In fact, the
stability analysis of these points indicates that they
are saddle points: they have one positive and one
negative eigenvalue.

In Fig. 7(b) another situation is presented. The
point ( 1

3 ,
1
3 ,

1
3 ) is about to change from stable

to unstable. The other three stationary points are
locally stable.

4The concrete syntax for writing this in the Bio-PEPA tool
set differs somewhat.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
cc

up
an

cy
 x

2

Occupancy x1

s = 2.7456

(a) s = 2.7456

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
cc

up
an

cy
 x

2

Occupancy x1

s = 3

(b) s = 3.0

Fig. 7. Phase plots of limit ODE


