

1

The HAL-online Tool

Stefania Gnesi, Gianluca Trentanni

{ stefania.gnesi, gianluca.trentanni}@isti.cnr.it

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa,

Italy

Abstract. The HD-Automata Laboratory (HAL) [1] is an integrated tool

set for the specification, verification and analysis of concurrent and

distributed systems. The core of HAL are the HD-automata: they are used as

a common format for the various history-dependent languages. The HAL

environment includes modules which implement decision procedures to

calculate behavioral equivalences, and modules which support verification of

behavioral properties expressed as formulae of suitable temporal logics. At

this moment HAL works only with concurrent and distributed systems

expressed by π-calculus formalism. The HAL environment allows π-calculus

agents to be translated into ordinary automata, so that existing equivalence

checkers can be used to calculate whether the π-calculus are bisimilar. The

environment also supports verification of logical formulae expressing desired

properties of the behavior of π-calculus agents.

In this paper the online version of the toolkit is shown.

Keywords: Formal method, History Dependant Automata, Pi Calculus,

Software/Program Verification

2

Introduction

HD-automata have been introduced in [33], with the name of π-automata, as a

convenient structure to describe in a compact way the operational behaviours of

π-calculus agents. HD-automata have been further generalized to deal with name

passing process calculi, process calculi equipped with location, causality and Petri

Nets [37, 34, 35].

Due to the mechanism of input, the ordinary operational semantics of the π-

calculus requires an infinite number of states also for very simple agents. The

creation of a new name gives rise to an infinite set of transitions: one for each

choice of the new name. To handle this problems in HD-automata names appear

explicitly in states, transitions and labels. Indeed, it is convenient to assume that

the names which appear in a state, a transition or a label of a HD-automaton are

local names and do not have a global identity. In this way, for instance, a single

state of the HD-automaton can be used to represent all the states of a system that

differ just for a bijective renaming.

The theory of HD-automata ensures that they provides a finite state faithful

semantical representation of the behaviour of π-calculus agents. Indeed, it is

possible to extract from the HD-automaton of a π-calculus agent its ordinary early

operational semantics. This is done by a simple algorithm (basically visiting the

HD-automaton) which maintains the global meaning of the local names of the

reached states.

Clearly, we have a transition for all the possible choices of the fresh names. In

other words, this procedure yields an infinite state automaton. To obtain a finite

state automaton it suffices to take as fresh name the first name which has been not

3

already used. In this way, a finite state automaton is obtained from each finite

HD-automaton.

To define an automatic verification procedure to model check whether or not a

π-logic formula holds for a π-calculus specification. it is possible to derive an

ordinary automaton for finitary π-calculus. Hence, if we were able to translate

formulae of the π-logic into “ordinary” logic formulae, it should be possible to

use existing model checking algorithms to check the satisfiability of “ordinary”

logic formulae over ordinary automata. This translation is possible using Actl

[16], for which an efficient model checker has been implemented [19] and for

which a sound translation exists.

The HAL toolkit provides facilities to deal with π-calculus specification by

exploiting HD-automata. In the following, the HAL-online toolkit architecture

and functions are shown and briefly explained.

System Overview

In Fig. 1 the HAL-online starting Web page is shown. This page provides

useful links pointing to essential references for π-calculus based model checking

and leads to the TOOLs page (Fig. 2).

4

Figura 1 - HAL-online starting page: http://fmt.isti.cnr.it:8080/hal

HAL has been developed exploiting Zope [56], an open source web and

application server that allows dynamic server pages generation and interaction

with the server le system through the highly compatible Python platform. Starting

from the HAL-online start page, the user can upload browsing the local system

or by means of a cut-and-paste from plain text files.

5

Figura 2 - HAL-online TOOLs page: http://fmt.isti.cnr.it:8080/hal/bin/HALOnLine

In Fig. 2 the HAL-online TOOLs page

http://fmt.isti.cnr.it:8080/hal/bin/HALOnLine

is shown. The ability to browse among local is usually delegated to common

web clients. The ability to retrieve the from the client system, and visualize it, is

realized taking advantage of simple DTML code calling the Zope built-in read

6

function. HAL-online exploits simple javascript and further DTML [56] code to

open the output window and to control that any request is denitely sent in the

correct form.

 The goal of the HAL toolkit is to verify properties of mobile systems specified

in the π-calculus.

Figura 3 - HAL-online architecture overview

In Fig. 3 The HAL-online internal architecture is shown.

Exploiting HAL facilities, π-calculus specifications are translated first into HD-

automata and then in ordinary automata. Hence, the bisimulation checking

performed by the AMC module can be used to verify (strong and weak)

7

bisimilarity. Automata minimization, according to weak bisimulation is also

possible.

HAL supports verification of logical formulae expressing properties of the

behaviour of π-calculus specifications.

The Actl model checker can be used for verifying properties of π-calculus

specifications, after that the π-logic formulae expressing the properties have been

translated into Actl formulae.

Notice that the complexity of the model checking algorithm depends on the

construction of the state space of the π-calculus agent to be verified,which is, in

the worst case, exponential in the syntactic size of the agent.

In the current implementation the HAL-online environment consists essentially

of five modules: three modules perform the translations from π-calculus agents to

HD-automata (pi-to-hd), from HD-automata to ordinary automata after hd

reduction, (hd-reduce and hd-to-aut) and from π-logic formulae to ordinary

ACTL formulae (pl-to-actl).

The fifth module works at the level of ordinary automata and performs the

standard operations on them like behavioral verification and model checking.

Latest function is represented by a tiny module called “trace”, developed ad-

hoc by Franco Mazzanti, that exports the textual formal description of automata

(both HD and LTS) in the drawable “dot” [50, 51, 52, 53, 54, 55] format allowing

a visual representation by means of a gif image.

8

Online User Interface

The upper part of the HAL-online user interface (Fig. 4) allows to specify the

π-automaton and the π-formula by hand (or to choose among four presets).

The default formula presets are briefly explained too (“?” buttons).

Figura 4 - HAL-online inputs boxes

The function button panel perform several functions of transformation and

visualization on automata and formulas.

9

Figura 5 - HAL-online control buttons set

The “HD Automata” buttons column allows a π-calculus agent to be

transformed into a HD-automaton and to view the resulting automaton in both the

textual formats fc2 and dot and graphically as gif image.

The “LTS Automata” buttons column allows a HD agent to be transformed

into a LTS automaton (i.e. an ordinary automaton) and to view the resulting

automaton in both the textual formats fc2 and dot and graphically as gif image.

The “ACTL Formula” column button “View Actl” allows a π-logic formula to

be translated into an ordinary ACTL one and visualizes it in text format in the

related result pop-up window.

The “Model Checking” column “Check” button allows to verify the

equivalence of the ordinary automata corresponding to the generated HD

automata from the π-calculus agents specified in the input text box by means of

the related choosen formula.

Several optimizations have been implemented. These optimizations reduce the

state space of HD-automata, thus allowing a more efficient generation of the

ordinary automata associated with π-calculus agents. An example of optimization

is given by the reduction of tau chains (that are unbranched sequences of tau

10

transitions) to simple tau transitions (option Reduce). Another optimization

consists of the introduction of constant declarations. Constant names are names

that cannot be used as objects of input or output actions (for instance, names that

represent stationary communication topologies, namely communication

topologies which cannot be modified when computations progress). Since

constant names are not consider as possible input values, the branching structure

of input transitions is reduced. The semantic handling of constants is presented in

[38]. Constants have to be declared in the π-calculus specifications.

Summarizing schematically, the available actions we can perform are:

 Model Checking

o Button “Check”: automatically checks the π-automaton against

the π-formula performing silently all the transformations,

translations, unfolding and reductions actions needed exploiting as

final step the AMC model checker. An Example of the output is

shown in Fig. 6.

 HD Automata

o Button “View HD (FC2)”: shows the HD automaton in the

textual fc2 formalism. An Example of the output is shown in Fig.

7.

o Button “View HD (dot)”: shows the formula in the textual dot

formalism. An Example of the output is shown in Fig. 8.

o Button “Draw HD”: draws the HD automata exploiting the dot

format and the “trace” tool. An Example of the output is shown in

Fig. 9.

11

 LTS Automata

o Button “View LTS (FC2)”: shows the LTS automaton in the

textual fc2 formalism. An Example of the output is shown in Fig.

11.

o Button “View LTS (dot)”: shows the LTS automaton in the

textual dot formalism. An Example of the output is shown in Fig.

12.

o Button “Draw LTS”: draws the HD automata exploiting the dot

format and the “trace” tool . An Example of the output is shown

in Fig. 13.

 ACTL Formulae

o Button “View ACTL”: shows the ACTL formula translated

starting from the pi-formula input text-box. An Example of the

output is shown in Fig. 10.

Thus, any action is the result of chained commands/programs and script

execution that usually give a feedback on the successfully or not execution itself,

a view on the internal actions log is provided for any action. An Example of the

output log for an action “Check” is shown in Fig. 11.

12

Figura 6 – Example of HAL-online "Check" output

13

Figura 7 - Example of HAL-online "View HD (fc2)" output

14

Figura 8 - Example of HAL-online "View HD (dot)" output

15

Figura 9 - Example of HAL-online "Draw HD" output

Figura 10 - Example of HAL-online "View ACTL" output

16

Figura 11 - Example of HAL-online "View LTS (fc2)" output

17

Figura 12 - Example of HAL-online "View LTS (dot)" output

18

Figura 13 - Example of HAL-online "Draw LTS" output

19

Figura 14 - Example of HAL-online output LOG for the action “Check”

20

References

[1] http://matrix.iei.pi.cnr.it/projects/JACK/hal.html

[2] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi

calculus. Information and Computation, 148(1):1–70, 1999

[3] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proc.

Royal Society of London A 246, 233-271, 1989

[4] A. Bouali and R. de Simone. Symbolic bisimulation minimization. In

Proc. CAV’92 LNCS 663. Springer-Verlag, 1992

[5] A. Bouali, A. Ressouche, V. Roy, and R. De Simone. The FC2Tools set.

In Proc. CAV’96, LNCS 1102. Springer Verlag, 1996

[6] L. Caires and L. Cardelli, A spatial logic for concurrency (Part II), In

Proc. CONCUR’02, LNCS 2421, Springer, 2002

[7] L. Caires and L. Cardelli, A spatial logic for concurrency (Part I),

Information and Computation, special issue on TACS 2001

[8] S. Chaki, S. Rajamani, and J. Rehof. Types as Models: model checking

message-passing programs. In Proc. POPL’02, ACM Press, 2002

[9] E. Clarke and J. Wing Eds. Formal Methods: State of the Art and Future

Directions. Strategic Directions in Comp. Res. Formal Methods WG Rep.

ACM Comp. Surv., December 1996

[10] E. Clarke, S. Jha, and W. Marrero. Using state space exploration and a

natural deduction style message derivation engine to verify security

protocols. In Proc. IFIPWorking Conference on Programming Concepts

and Methods (PROCOMET), 1998

[11] M. Dam. Model checking mobile processes. In Proc. CONCUR’93,

LNCS 715, Springer Verlag, 1993

[12] 12. M. Dam. Proof systems for π-Calculus Logics. To appear on Logics

for Concurrency and Synchronization. Studies in Logics and

Computation, Oxford University Press, 2001

21

[13] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based

framework for verifying logical and behavioural properties of concurrent

systems. Computer Networks and ISDN Systems 25(7):761-778. North-

Holland, 1993.

[14] R. De Nicola and F. W. Vaandrager. Action versus state based logics for

transition systems. In Proc. Ecole de Printemps on Semantics of

Concurrency, LNCS 469. Springer Verlag, 1990

[15] E.A. Emerson and J.Y. Halpern. Sometimes and Not Never Revisited: on

Branch-ing Time versus Linear Time Temporal Logic. Journal of ACM,

33(1), January 1986, pp. 151–178

[16] Ferrari, U. Montanari, and M. Pistore. Minimizing Transition Systems for

Name Passing Calculi: A Co-algebraic Formulation. In Proc.

FOSSACS’02, LNCS 2303, 2002

[17] J.-C. Fernandez and L. Mounier. “On the Py” verifcation of behavioral

equivalences and preorders. In Proc. CAV’91, LNCS 575. Springer

Verlag, 1991

[18] G. Ferro. AMC: ACTL Model Checker. Reference Manual. IEI-Internal

Report, B4-47, 1994

[19] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In

14
th
 Annual Symposium on Logic in Computer Science. IEEE Computer

Society Press, 1999

[20] R. Focardi and R. Gorrieri. The Compositional Security Checker: A tool

for the verification of information how security properties. IEEE

Transaction on Software Engineering, 23(9):550–571, 1997

[21] M.J. Gabbay and A.M. Pitts. A new approach to abstract syntax involving

binders. In 14th Annual Symposium on Logic in Computer Science. IEEE

Computer Society Press, 1999

[22] A. Gordon, Notes on Nominal Calculi for Security and Mobility, In Proc.

FOSAD Sumer School, LNCS 2171, Springer, 2001

[23] S. Gnesi and G. Ristori. A Model Checking Algorithm for π-calculus

agents. In Advances in Temporal Logic. Kluwer Academic Publishers,

pp.339-357, 2000

22

[24] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and

concurrency. Journal of ACM 32(1), pp. 137-161, 1985

[25] K. Honda, Elementary Structures for Process Theory (1): Sets with

Renaming. Mathematical Structures in Computer Science 10:617–613,

Cambridge University Press, 2000

[26] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer

Science 27, pp. 333-354, 1983

[27] M. Lowe. An attack on the needham-schroeder public-key authentication

protocol, Information Processing Letter, 56(3):131–133, 1995.

[28] E. Madelaine and D. Vergamini. AUTO: A verification tool for

distributed systems using reduction of finite automata networks. Formal

Description Techniques II, 1990

[29] R. Milner. Communication and Concurrency. Prentice-Hall, 1989

[30] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes

(parts I and II). Information and Computation, 100:1–77, 1992

[31] R. Milner, J. Parrow, and D. Walker. Modal logic for mobile processes. In

Theoretical Computer Science 114:149-171, 1993

[32] U. Montanari and M. Pistore. Checking bisimilarity for unitary PI-

calculus. In Proc. CONCUR’95, LNCS 962. Springer Verlag, 1995.

[33] U. Montanari and M. Pistore. π-calculus, structured coalgebras and

minimal HD-automata. In Proc. MFCS’00, LNCS 1893. Springer, 2000.

[34] U. Montanari and M. Pistore. Structured Coalgebras and Minimal HD-

automata for the PI-Calculus, MFCS 2000 special issue of Theoretical

Computer Science.

[35] R. Needhan. In Distributed Systems (Mullender, Ed). Addison-Wesley,

1989

[36] 36. M. Pistore. History Dependent Automata. PhD. Thesis TD-5/99,

Universit`a di Pisa, Dipartimento di Informatica, 1999

[37] Montanari, U. and Pistore, M., Checking Bisimilarity for Finitary pi-

calculus, in: Insup Lee, Scott A. Smolka, Eds., CONCUR'95:

Concurrency Theory, Springer LNCS 962, pp. 42-56.

23

[38] Montanari, U., Pistore, M., and Yankelevich, D., Efficient Minimization

up to Location Equivalence, in: Hanne Riis Nielson, Ed., Programming

Languages and Systems - ESOP'96, Springer LNCS 1058, pp. 265-279

[39] Montanari, U. and Pistore, M., History Dependent Verification for Partial

Order Systems, in: D. Peled, V.Pratt, and G. Holzmann, Eds., Procs.

Partial Order Methods in Verifications, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, Vol.29, 259-272, 1996

[40] Montanari, U. and Pistore, M., Minimal Transition Systems for History-

Preserving Bisimulation, in: Ruediger Reischuk, Michel Morvan, Eds.,

STACS 97, Springer LNCS 1200, 1997, pp. 413-425

[41] Ferrari, G., Ferro, G., Gnesi, S., Montanari, U., Pistore, M. and Ristori,

G., An Automata Based Verification Environment for Mobile Processes,

in: Ed Brinksma, Ed., Tools and Algorithms for the Construction and

Analysis of Systems, Springer LNCS 1217, 1997, pp. 275-289

[42] Ferrari, G., Gnesi, S., Montanari, U., Pistore, M. and Ristori, G.,

Verifying Mobile Processes in the HAL Environment, in: Alan J. Hu and

Moshe Y. Vardi, Eds., CAV'98, Springer LNCS 1427, pp.511-515.

[43] Montanari, U. and Pistore, M., An Introduction to History Dependent

Automata, in: Andrew Gordon, Andrew Pitts and Carolyn Talcott, Eds,

Second Workshop on Higher-Order Operational Techniques in Semantics

(HOOTS II), ENTCS, Vol. 10, 1998

[44] Montanari, U. and Pistore, M., Finite State Verification for the

Asynchronous Pi-Calculus, in: W. Rance Cleaveland, Ed., TACAS'99,

Springer LNCS 1579, pp.255-269, 1999.

[45] Montanari, U. and Pistore, M., Pi-Calculus, Structured Coalgebras and

Minimal HD-Automata, in: Mogens Nielsen and Branislav Roman, Eds.,

Proc. MFCS 2000, Springer LNCS 1983

[46] Ferrari, G., Montanari, U. and Pistore, M., Minimizing Transition Systems

for Name Passing Calculi: A Co-algebraic Formulation, in: Mogens

Nielsen and Uffe Engberg, Eds., FOSSACS 2002, Springer LNCS 2303,

pp.129-143

[47] Buscemi, M. and Montanari, U., A First Order Coalgebraic Model of Pi-

Calculus Early Observational Equivalence, Proc. CONCUR 2002,

Springer LNCS

24

[48] Montanari, U. and Pistore, M., History-Dependent Automata, Technical

Report TR-98-11, Dipartimento di Informatica, Pisa

[49] Montanari, U. and Pistore, M., Structured Coalgebras and Minimal HD-

Automata for the pi-Calculus, Technical Report 0006-02, IRST-ITC, 2000

[50] M. Carpano. Automatic display of hierarchized graphs for computer aided

decision analysis. IEEE Transactions on Software Engineering, SE-

12(4):538–546, April 1980

[51] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and Kiem-

Phong Vo. A Technique for Drawing Directed Graphs. IEEE Trans.

Sofware Eng., 19(3):214–230, May 1993

[52] Frances J. Newbery. Edge Concentration: A Method for Clustering

Directed Graphs. In 2nd International Workshop on Software

Configuration Management, pages 76–85, October 1989. Published as

ACM SIGSOFT Software Engineering Notes, vol. 17, no. 7, November

1989

[53] Stephen C. North. Neato User’s Guide. Technical Report 59113-921014-

14TM, AT&T Bell Laboratories, Murray Hill, NJ, 1992

[54] K. Sugiyama, S. Tagawa, and M. Toda. Methods for Visual

Understanding of Hierarchical System Structures. IEEE Transactions on

Systems, Man, and Cybernetics, SMC-11(2):109–125, February 1981

[55] JohnWarfield. Crossing Theory and HierarchyMapping. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-7(7):505–523, July

1977

[56] The Zope Book the o cial on line Zope manual.

http://zope.org/Documentation/Books/ZopeBook/2 6Edition/

25

Appendix A: Grammars

26

27

28

