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Abstract

Global (or network-aware) computing entails large-scale networks of computers performing
tasks in a cooperative and coordinated manner. Programming and modeling languages such
as Klaim focus on key functional aspects of global computing such as distribution awareness,
(code and agent) mobility, and privacy aspects. This paper instead concentrates on their
performance and dependability aspects. It proposes StoKlaim, an extension of Klaim which
permits the description of random phenomena such as spontaneous computer crashes and
spurious network hick ups. The operational semantics of StoKlaim is based on continuous-
time Markov chains. The approach is illustrated by modeling the spreading of a virus through
a network.

1 Introduction

1.1 Global computing

During the last couple of decades, computer systems have changed significantly: stand-alone,
static devices executing programs autonomously have evolved to large-scale networks of comput-
ing devices performing tasks in a cooperative and coordinated manner. These modern, complex
distributed systems—also known as global or network-aware computers [10]—are highly dynamic
and have to deal with frequent changes of the network environment. The world wide web is a
major example of such a global “computer”. Features such as distribution awareness and code
mobility which were absent or deliberately invisible in previous computer generations play a promi-
nent rôle in global computing. Dedicated programming and specification formalisms have been
developed that can deal with issues such as (code and agent) mobility, remote execution, security
aspects and data privacy and integrity. Important examples of such languages and frameworks are,
among others, Obliq [9], Seal [11], ULM [6] and Klaim (Kernel Language for Agents Interaction
and Mobility [4]).

1.2 Dependable global computing

Performance and dependability issues are of utmost importance for “network- aware” computing,
due to the enormous size of systems—networks typically consist of thousands or even millions of
nodes—and their strong reliance on mobility and interaction. Spontaneous computer crashes may
easily lead to failure of remote execution or process movement, while spurious network hick ups
may cause loss of code fragments or unpredictable delays. The enormous magnitude of computing
devices involved in global computing yields failure rates that no longer can be ignored. The

∗The work presented in this report has been partially supported by EU Project Software Engineering for Service-
Oriented Overlay Computers (SENSORIA, contract IST-3-016004-IP-09).
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presence of such random phenomena implies that correctness of global computing software and
their privacy guarantees are no longer rigid notions like:

“either it is safe or it is not”

but have a less absolute nature, e.g.:

“in 99.7% of the cases, privacy can be ensured”

The intrinsic complexity of global computers, though, complicates the assessment of these issues
severely. Systematic methods, techniques and tools—all based on solid mathematical foundations
i.e., formal methods, are therefore needed to establish performance and dependability requirements
and guarantees. This paper attempts to make a considerable step into this direction by extending
a successful programming and specification formalism for global computing, Klaim, with random
delays.

1.3 Modeling dependable global computing

To facilitate the incorporation of random phenomena in models for network-aware computing, we
propose a simple, yet powerful extension of Klaim [12, 4]. Klaim is an experimental language
for distributed systems that is aimed at modeling and programming mobile code applications, i.e.,
applications for which exploiting code mobility is the prime distinctive feature. Its distinguishing
feature is the explicit use of localities for modeling data or computational resources distribution.
It is heavily based on the process algebras CCS and π-calculus as well as on the coordination
paradigm of Linda. Klaim models networks as finite collections of sites, each equipped with a
(physical) address, where processes can execute and data can reside. Processes and actions—like
in traditional process algebras—are key elements in Klaim and possess the possibility to explicitly
refer to and control the spatial structure of the global network at any point of their evolution.
Processes are the active computational entities and may run concurrently, either at the same site
or at distinct ones. They interact in an asynchronous fashion via multiple distributed tuple spaces,
a generalization of the well-known single shared tuple space in Linda [18]. Actions in Klaim
explicitly indicate the (possibly remote) site at which they will have effect. Klaim supports core
aspects for global computing such as process distribution, remote evaluation (a process spawns
another process for execution to another site), code on demand (a process may download code
from a remote site to execute it locally), and site creation.

In the proposed extension, referred to as StoKlaim, these actions are assumed to have a ran-
dom duration governed by a negative exponential distribution. The resulting operational model
is therefore a continuous-time Markov chain (CTMC, for short), one of the most popular mod-
els for the evaluation of performance and dependability of information processing systems. Our
extension is inspired by Markovian extensions of traditional process algebras; for recent surveys
see, e.g. [22, 24]. Exponential durations keep the semantics simple but seem to have a somewhat
limited expressiveness; however, proper combinations of exponential distributions can approxi-
mate general distributions arbitrarily closely. Consequently, they are adequate for many real-life
phenomena (such as failure rates and inter-arrival times) and—more importantly—they are the
most appropriate stochastic approximation if only the mean duration is known 1. Our modelling
approach is exemplified by modeling the spreading of a virus through a network. A preliminary
version of the language StoKlaim has been published in [15].

1.4 Specifying properties of dependable global computing

Models specified in StoKlaim thus yield a Markov chain as operational model. To assess depend-
ability aspects, typically long-run or transient probabilities of such chains are determined. We are
interested in a more recent technique that determines performance and dependability guarantees

1Technically speaking, they maximize the entropy when only the mean is known. There is no other continuous
distribution function for which this property holds.

2



in a fully automated manner using model checking. Such guarantees are formulated in a proper
stochastic temporal logic for mobility which is the topic of the companion report [13]. In the
present paper we instead show how the CTMC obtained from a StoKlaim specification modeling
a system can be used for traditional analysis.

1.5 Organization of the paper

Section 2 gives a brief introduction into the basics of continuous-time Markov chains. Section 3
introduces the modeling and programming language StoKlaim, formally defines its syntax and
its operational semantics, and details out how Markov chains are obtained from StoKlaim spec-
ifications. Section 4 presents the virus spreading example. Section 5 reviews existing work on
stochastic languages for mobility and, finally, Section 6 concludes.

2 Markov chains

We briefly introduce continuous-time Markov chains and the notations we use for them. A com-
prehensive treatment can be found in textbooks such as, e.g., [25].

2.1 Exponential distributions

A continuous random variable X is exponential with parameter λ > 0 if its cumulative distribution
function (cdf) is of the form

FX(d) def= P{X ≤ d} = 1− e−λ·d for d ≥ 0 .

The real number λ is called the rate of X and uniquely determines an exponential distribution.
The expectation of X is 1

λ , i.e., the average duration is 1
λ time units.

Some important properties of negative exponential distributions are the following. They possess
the memory-less property, i.e.,

P{X > t + d | X > t} = P{X > d} .

For exponential random variables X and Y with rate λ and µ, respectively, we have that the
random variable min(X, Y ) is exponentially distributed with rate λ+µ. This is sometimes also
referred to as the race condition of exponential distributions. An important property of such a
“race” is that the probability that one of the random variables wins the race is just determined
by the rates:

P{X = min(X, Y )} =
λ

λ+µ
.

2.2 Continuous-time Markov chains

A continuous-time Markov chain (CTMC) is a tuple (S,R) where S is a countable set of states and
R a rate matrix assigning non-negative rates to pairs of states. Roughly speaking, R(s, s′) = λ > 0
means that the average speed of going from state s to s′ is 1

λ . A CTMC is thus a transition
system (with unlabeled transitions) where transitions are equipped with continuous probabilities.
Let E(s) =

∑
s′∈S R(s, s′) the exit rate of state s. State s is called absorbing whenever E(s) =

0. It should be noted that we allow self-loops, i.e., R(s, s) > 0 is allowed. The presence of
such transitions does not affect standard measures of CTMCs such as transient or steady-state
distributions and allows for a natural definition of the operators in the temporal logic [2, 13].

We conclude this brief introduction by giving the intuitive interpretation of a CTMC. The
probability that transition s → s′ is enabled in the time interval [0, d] is

1− e−R(s,s′)·d .
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Due to the race condition between competing random variables, the probability to move from
non-absorbing state s to s′ in the interval [0, d] is:

R(s, s′)
E(s)

·
(
1− e−E(s)·d

)
.

The first component indicates the discrete probability to move from s to s′, while the second
component characterizes the residence time in state s prior to the move; the probability to take
an outgoing transition from s within [0, d] is 1− e−E(s)·d.

3 StoKlaim

3.1 Syntax of StoKlaim

This section introduces the ingredients of Klaim and presents a simple extension thereof—inspired
by Markovian process algebras—allowing basic activities in Klaim specifications to obey a random
duration that is governed by an exponential distribution. The section is organized as follows. We
first introduce the syntax of StoKlaim and its formal semantics yielding a labeled transition
system. It will be shown how (action-labeled) CTMCs can be obtained from such transition
systems. Finally, we give a comparison between our semantics and that of Klaim.

3.1.1 Syntactic categories

To start of with, we distinguish the following basic syntactic categories.

• V, ranged over by v, v′, v1, . . ., is a set of (basic data) values;

• I, ranged over by i, i′, i1, . . ., is a set of (physical) addresses;

• L, ranged over by l, l′, l1, . . ., is a set of logical addresses, also called localities; the locality
self ∈ L;

• R, ranged over by r, r′, r1, . . ., is a set of rate names;

• V-var, ranged over by x, x′, x1, . . ., is a a set of value variables;

• L-var, ranged over by u, u′, u1, . . ., is set of locality variables;

• P-var, ranged over by X, X ′, X1, . . ., is a set of process variables.

All these sets are countable and are mutually disjoint. Let `, `′, `1 range over L ∪ L-var.
We adopt the (~·)-notation for sequences; e.g., ~l = l1, l2, . . . , ln denotes a sequence over L and

~x = x1, x2, . . . , xm is a sequence over V-var. For sequence ~s = s1, . . . , sn, let {~s} denote the set of
elements in ~s, i.e., {~s} = {s1, . . . , sn}. One-element sequences and singleton sets are denoted as
the element they contain, i.e., {s} is denoted as s and ~s = s′ as s′.

3.1.2 Nets and processes

Specifications in StoKlaim consist of nets and processes. The most elementary net is the null net,
denoted 0. A net consisting of a single node with address i is denoted i ::ρ E where ρ is an allocation
environment and E is a node element. Allocation environment ρ maps localities occurring in the
processes running at i to addresses. Nets may be composed of the parallel composition of several
nodes. Thus, nets are constructed according to the following grammar:

N ::= 0 (null net)
| i ::ρ E (node)
| N || N (composition)
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Node elements are either processes executing at a node—process nodes in the sequel—or data
(represented as a tuple ~f , see later on) that is stored at a node:

E ::= P (running process)
| 〈~f〉 (stored tuple)

Processes are built up from the terminated process nil, a set of randomly delayed actions, and
standard process algebraic constructors such as prefix, choice, parallel composition and process
instantiation. Formally, for action A:

P ::= nil (null process)
| (A, r).P (action prefix)
| P + P (choice)
| P | P (parallel composition)
| X( ~X ′, ~̀, ~e) (process instantiation)

where process X and all X ′ are assumed to be defined in the sequence of process definitions ~D by
proper process defining equations of the form:

X( ~!X, ~!u, ~!x) ∆= P .

Note that, for syntactical uniformity, all binding occurrences of variables are prefixed with ’!’.
This includes occurrences in node creation and read actions (see below), and formal parameters
of process definitions.

The process (A, r).P executes action A with a duration that is distributed exponentially with a
rate specified by rate-name r. Rate-names are mapped to rate values by means of a (partial) func-
tion, denoted β, from R to R>0. Thus, the duration of the execution of action A is exponentially
distributed with rate (β r).

A few words are in order concerning rate names. As known from the field of probabilistic and
Markovian process algebra, care must be taken to assign the right interpretation to terms of the
form

(A, λ).nil + (A, λ).nil .

A naive approach would yield a single transition labeled with rate λ leading to nil, while the
race condition interpretation of choice operator requires a single transition labeled with rate 2 ×
λ. To avoid this problem several approaches have been proposed such as indexed or proved
transitions [19, 27], recursive definitions of measures [29], and multi-sets [22]. The solution taken
here is by using rate names, and enforcing that all rate names are unique. This easily combines
with the structural congruence. Uniqueness of rate names is established in the inference rules of
the operational semantics.

It is convenient to introduce the following notions. Let N be a net. The site (with address) i
is the collection of nodes in N with address i. The set of processes running at site i is the set of
processes P such that i ::ρ P ′ occurs in N and P = P ′, or is a proper sub-process of P ′. The set of
processes (localities, or basic values, respectively) stored at site i is the set of processes (localities,
or basic values resp.) occurring as fields of tuples ~f such that i ::ρ 〈~f〉 is in N .

3.1.3 Actions

A process can write the value v in repository2 l by the output action out(v)@l. With an in-
put action in(F1, . . . , Fn)@l a process can withdraw a datum that matches pattern, or template
(F1, . . . , Fn) from repository l. Processes can be written to/withdrawn from a repository as well.
Action read(F1, . . . , Fn)@l is similar to in(F1, . . . , Fn)@l except that the datum at l is not deleted

2That is, the repository with address i, where i is the address which is bound to l by the allocation environment
of the node where the process is running.
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from the repository at l. The action eval(P )@l spawns process P at site l. A locality variable u
can be used in place of l in all above actions. Action newloc(!u) creates a new node. The newly
created locality (bound to the address of the newly created node) is referred to by variable u.
Actions are built according to the following grammar:

A ::= out(~f)@` (output)
| in(~F )@` (input)
| read(~F )@` (read)
| eval(P )@` (process spawning)
| newloc(!u) (node creation)

3.1.4 Tuples and templates

Tuple fields can be processes, localities, locality variables and value expressions. For the sake of
simplicity, process fields are restricted to process instantiations only, as in the case of process actual
parameters of process instantiations. We assume a standard way for building value expressions
from values, value variables and operators and do not discuss these in any further detail here. The
grammar for tuple fields is:

f ::= X( ~X ′, ~̀, ~e) (process)
| ` (locality or locality variable)
| e (value expression)

Template fields can be tuple fields, or binders, which are variables prefixed with an exclamation
mark. Binders indicate the binding occurrences of related variables; their scope will be defined in
Section 3.2. Template fields obey the following syntax:

F ::= f (tuple field)
| !X (process binder)
| !u (locality binder)
| !x (value binder)

3.1.5 StoKlaim specifications

A StoKlaim specification is a triple (β, N, ~D) where β : R → R>0 is a rate-mapping, i.e., a
function from rate-names to rates. N and ~D are, respectively, a net modeling the behaviour of a
system and the process definitions for the processes used in N .

3.2 Semantics of StoKlaim

The semantics of StoKlaim is defined in a similar way as that of Klaim, and consists of a struc-
tural congruence on terms that allows the simplication of terms using some simple axioms, together
with an operational semantics mapping terms onto—in our case— action-based Markov chains.
First, we restrict ourselves to well-formed specifications by imposing some (straightforward) static
semantics constraints. Notice that StoKlaim is a typed language; type-checking StoKlaim
is out of the scope of the present paper, where type-correctness of StoKlaim specifications is
assumed.

3.2.1 Well-formed specifications

Free and bound variables are defined in the usual way: in processes of the form (newloc(!u), r).P ,
binder !u binds all free occurrences of variable u in P . Similarly, in process (in(~F )@`, r).P or
(read(~F )@`, r).P a binder occurring in ~F binds all free occurrences of the variable with the same
name in P . In a process definition like X( ~!X ′, ~!u, ~!x) ∆= P , a binder occurring in the formal
parameter list ~!X ′, ~!u, ~!x binds all free occurrences of the variable with the same name in P . In
these cases, P is called the scope of the binder at hand.
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Let (dom β) be the domain of β, (dom ρ) the domain of allocation environment ρ, (rng ρ) is
the range of ρ, (Loc N), (Adr N) and (Rat N) the set of localities, addresses and rate names,
respectively, occurring in N .

Definition 3.1 A StoKlaim specification (β, N, ~D) is well-formed if and only if it is type-correct
and:

• all rate-names occurring in N or ~D are distinct.

• (dom β) = (Rat N)

• each allocation environment ρ in N satisfies:

(i) self ∈ (dom ρ);

(ii) (dom ρ) \ {self} ⊆ (Loc N)

(iii) (rng ρ) ⊆ (Adr N)

(iv) for all nodes i1 ::ρ1 E1 and i2 ::ρ2 E2, if i1 = i2 then ρ1 and ρ2 are compatible, i.e., for
all l in (dom ρ1) ∩ (dom ρ2) we have ρ1 l = ρ2 l.

• The only free variables occurring in N are process variables defined in ~D.

• All process variables used in the left-hand-side of defining equations in ~D are distinct. In
every defining equation X( ~!X ′, ~!u, ~!x) ∆= P in ~D all binders occurring in the formal parameter
list ~!X ′, ~!u, ~!x are distinct and all free (process) variables occurring in P , which are not bound
by the binders in ~!X ′, ~!u, ~!x, are defined in some defining equation in ~D. Finally, for each
process formal parameter !X ′ there is at most one free occurrence of X ′ in P .

• All processes instantiations X( ~X ′, ~̀, ~e) are guarded, i.e. they occur in the context of an
action prefix (A, r).X( ~X ′, ~̀, ~e), for some A and r.

• In processes of the form (in(~F )@`, r).P or (read(~F )@`, r).P , all binders occurring in ~F

are distinct; moreover for each process binder !X occurring in ~F there is at most one free
occurrence of X in P .

3

In the remainder of this paper we assume specifications to be well-formed.

3.2.2 Structural congruence

StoKlaim specifications will be mapped by the operational semantics definition onto labeled
transition systems, in our case action-labeled Markov chains. The states of these structures are
called configurations, i.e., tuples (I, L, β,N), often denoted as I, L, β,` N , where I ⊆ I and L ⊆ L
are the set of addresses and localities, respectively, in the net N , and β is the rate-mapping.
Configurations are considered modulo the structural congruence relation defined in Table 1. (For
the sake of simplicity we have omitted the components I, L and β when they are unaffected.)
Compared to the structural congruence laws of Klaim, the laws (CO+), (AS+), and (NE+), and
(REN) have been added. Law (REN) states that the rate names occurring in N can be replaced
by means of a rate-name substitution θ. We adopt the usual notation for syntactical substitution,
namely Nθ, where θ is a total function in R → R. It is required that (i) the substitution does not
interfere with the current rate-mapping (i.e., (dom β)∩ (rng θ) = ∅), (ii) uniqueness of rate-names
is preserved in Nθ (i.e., θ is injective), and (iii) the rate-mapping in the configuration resulting
from applying the substitution is defined for the new names and gives the same rates as for the old
ones (i.e. the new mapping is the composition of the old mapping and the inverse of θ). Finally,
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(NE||) N ≡ N || 0

(CO||) N1 || N2 ≡ N2 || N1

(AS||) N1 || (N2 || N3) ≡ (N1 || N2) || N3

(NE+) i ::ρ P ≡ i ::ρ P + nil

(CO+) i ::ρ P1 + P2 ≡ i ::ρ P2 + P1

(AS+) i ::ρ P1 + (P2 + P3) ≡ i ::ρ (P1 + P2) + P3

(NE|) i ::ρ P ≡ i ::ρ P | nil

(CLO) i ::ρ1��ρ2 P1 | P2 ≡ i ::ρ1 P1 || i ::ρ2 P2

if ρ1 and ρ2 are compatible

(REN) β ` N ≡ β ◦ θ−1 ` Nθ
for any injection θ : R → R with
(dom θ) = (Rat N) and (rng θ) ∩ (dom β) = ∅

Table 1: Structural congruence laws

[[P ]]ρ
def= P{ρ} [[!X]]ρ

def= !X
[[`]]ρ

def= ` [[!u]]ρ
def= !u

[[e]]ρ
def= E [[e]] [[!x]]ρ

def= !x

[[(F1, . . . , Fn)]]ρ
def= ([[F1]]ρ, . . . , [[Fn]]ρ)

Table 2: Tuple evaluation

in law (CLO) the allocation environments must be taken care of; in particular, ρ1 and ρ2 must be
compatible (see Def. 3.1), in which case, allocation environment ρ1 ��ρ2 is defined as follows:

(ρ1 ��ρ2) l
def=

{
ρ1 l, if l ∈ dom ρ1

ρ2 l, if l ∈ dom ρ2

3.2.3 Tuple evaluation

Function [[·]]· (cf. Table 2) evaluates tuples and templates. Notice that [[u]]ρ yields u. In practice,
the static semantics constraints together with the semantics of the in and newloc actions as well
as process instantiation guarantee that variables are properly replaced by their values whenever
necessary3. In Table 2 function E [[·]] is used for evaluating value expressions e. The definition of
E [[·]] is outside the scope of the present paper.

P{ρ} denotes a process closure, i.e., a pair consisting of a process and an allocation environ-
ment. P{ρ} behaves like process P except that any locality l in P denotes the physical address
(ρ l) if l ∈ (dom ρ), and is resolved with the current allocation environment otherwise. Closures
are not part of the language, but are only used in the operational semantics (definition); they may
occur at any place where a process is allowed.

3Thus, there is no need for explicitly evaluating variables by [[·]]·.
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rename(nil, β) def= (nil, β)

rename((A, r).P, β) def= ((A, r′).P ′, β′) where
r′ ∈ R \ (dom β) and
(P ′, β′) = rename(P, β[(β r)/r′])

rename(P1 op P2, β) def= (P ′
1 op P ′

2, β
′), op ∈ {+, |} where

(P ′
1, β

′′) = rename(P1, β) and
(P ′

2, β
′) = rename(P2, β

′′)

rename(X(~P , ~̀, ~e), β) def= (X(~P , ~̀, ~e), β)

rename(P{ρ}, β) def= (P ′{ρ}, β′) where
(P ′, β′) = rename(P, β)

rename(`, β) def= (`, β)

rename(e, β) def= (e, β)

rename((f1, . . . , fn), β) def= ((f ′
1, . . . , f

′
n), β′) where

(f ′
1, β

′
1) = rename(f1, β) and

(f ′
j , β

′
j) = rename(fj , β

′
j−1)

for 1 < j ≤ n with β′ = β′
n

Table 3: Rate name renaming

3.2.4 Rate name renaming

Function rename (cf. Table 3) takes as argument a process P and a rate mapping β. It renames
all rate-names occurring in P into fresh names and adapts β accordingly. rename will be used
in defining the semantics of the actions out and eval and in process instantiation to guarantee
unique rate-names. It is not difficult to establish that rename indeed establishes unique rate
names. Notice also that, strictly speaking, Table 3 characterizes a set of functions, each specific
one being defined by the particular choices performed in the second equation.

3.2.5 Substitutions

In the inference rules defined below we exploit substitutions and combinations thereof. They
have the usual meaning, i.e., for d1, . . . , dn ranging over L ∪ V ∪ P , and w1, . . . , wn ranging over
L-var ∪ V-var ∪ P-var, we let [d1/w1 . . . dn/wn], with wi 6= wj for i 6= j, denote the substitution
which replaces wj by dj for 0 < j ≤ n. Let [] denote the empty substitution and, w.l.o.g, for
substitution Θ1:

[d1/w1, . . . , dn/wn, d′1/w′
1, . . . , d

′
m/w′

m]

and substitution Θ2:

[d′′1/w′
1, .., d

′′
m/w′

m, d′′m+1/w′
m+1, .., d

′′
m+h/w′

m+h]

with {w′
m+1, . . . , w

′
m+h} ∩ {w1, . . . , wn} = ∅, let Θ1 / Θ2 be the substitution:

[d1/w1, . . . , dn/wn, d′′1/w′
1, . . . , d

′′
m/w′

m, d′′m+1/w′
m+1, . . . , d

′′
m+h/w′

m+h] .

3.2.6 Matching

Pattern-matching of templates with (stored) tuples is used to define the semantics of input and
read-actions. In essence, this goes along similar lines as for Klaim (and is rather standard) except
that tuple fields can be processes and may include rate names. A matching is successful when—in

9



addition to the usual matching criteria—rate names indicate the same rate. Function match (cf.
Table 4) yields a substitution if a matching is successful. Here, it is assumed that β is the rate
mapping for which the matching is considered. (Strictly speaking, β is a parameter of match, but
as it is unchanged in all cases, this is left implicit for the sake of readability.) In the definition of
match, processes are considered the same as closures with an empty allocation environment.

match(l, l) def= [] match(v, v) def= [] match(nil,nil) def= []

match(!X, P{ρ}) def= [P{ρ}/X] match(!u, l) def= [l/u] match(!x, v) def= [v/x]

match(P, P ′) = [] (β r) = (β r′)
match((A, r).P, (A, r′).P ′) def= []

match(P1, P
′
1) = [] match(P2, P

′
2) = []

match(P1 + P2, P
′
1 + P ′

2)
def= []

match(~P , ~P ′) = [] match(~l, ~l′) = [] match(~v, ~v′) = []
match(X(~P ,~l, ~v), X( ~P ′, ~l′, ~v′)) def= []

match(P, P ′) = []
match(P{ρ}, P ′{ρ}) def= []

match(F1, f
′
1) = Θ1 . . . match(Fn, f ′

n) = Θn

match((F1, . . . , Fn), (f ′
1, . . . , f

′
n)) def= Θ1 / . . . / Θn

Table 4: Pattern-matching of tuples against templates

3.2.7 Labeled transition system semantics

Given the auxiliary definitions so far, we are now in a position to define the operational semantics
of a StoKlaim specification (β, N, ~D) that consists of network N , rate mapping β and process
definitions in ~D. The semantics is defined in terms of a labeled transition system where states are
in fact configurations modulo structural equivalence. Let Conf, ranged over by c, c′, c1, . . ., be the
set of all representatives of the equivalence classes induced by the structural congruence ≡. We
abstract here from the way in which such representatives are chosen, except that we require that
at most one process node per physical address can occur in the network component of any such a
representative4.

The derivatives (Der c) of configuration c ∈ Conf is the smallest set such that it includes c,
and is closed under the inference rules defined in Tables 5 and 1. The labeled transition system
of StoKlaim specification (β, N, ~D) is the quadruple (C,Λ,−→, c0) with:

• c0 ∈ Conf, the initial state, is (the standard representative of) (Adr N), (Loc N), β ` N ;

• C
def= (Der c0) is the set of states;

• Λ ⊆ (I × A)×R is the label-set; and

• −→, the transition relation, is the smallest relation on C × Λ × C induced by the rules of
Table 5 and the laws of Table 1.

Here, A is the set of ground actions constructed according to the grammar:

o( ~F , I) | i( ~F , I) | r( ~F , I) | e(P, I) | n(I)

4This can be easily achieved by means of law (CLO) and has the consequence that all processes running at a
given site are in fact represented as (parallel components of) a single process node.
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for an output, input, read, eval, and newloc action, respectively. The tuple parameters F are
defined as follows:

F ::= P | l | v

We let γ, γ′, γ1, . . . range over action-labels and denote (c, (γ, r), c′) ∈ −→ by c
γ,r−→ c′. Finally, we

let Nc (βc, resp.) denote the network (rate maping, resp.) component of c.
It remains to explain the rules in Table 5 where for simplicity we have omitted the components

I, L and β from a configuration whenever they are unchanged. We discuss the rules one by one.

3.2.8 Process and data distribution

Rule (OUT) models the dispatching of a tuple at an existing (possibly remote) site. The basic
format of the rule is as follows:

ρ1 l = i2

i1 :: (out(~f)@l, r).P || i2 :: E−→ i1 :: P || i2 :: E || i2 :: 〈~f ′〉

where ρj , i.e. the allocation environment for ij (j = 1, 2) is not shown in the conclusion of rule
above, for simplicity. For action out(~f)@l, the tuple ~f first needs to be evaluated, yielding ~f ′.
To do so, we may either adopt a static or a dynamic scoping rule. According to the former, the
allocation environment ρ1 of the source site is used in the evaluation of ~f ; for the latter, ρ2 of the
destination site is used instead. In Section 4, the latter option will be adopted for the out action.5

Prior to evaluation, the tuple needs to undergo (rate) renaming— as it may contain processes,
and thus rate names—in order to guarantee uniqueness of rate names. Rule (OUT) in Table 5
contains the full details for the static approach.

3.2.9 Code on demand

Rule (IN) defines the operation of retrieving a tuple from an existing (possibly remote) site. In
its most rudimentary form, the inference rule roughly reads as follows:

ρ1 l = i2

i1 :: (in(~F )@l, r).P || i2 :: 〈~f〉−→ i1 :: PΘ || i2 :: nil

where—as before—the allocation environment ρj for ij (j = 1, 2) is not indicated explicitly and
Θ is the substitution resulting from the matching of ~f with the template ~F . All free variables
occurring in P which occur as binders in ~F are replaced by proper values according to Θ. Action
in(~F )@l is blocking in the sense that it can only be performed if a tuple ~f is present at site i2
that matches template [[~F ]]ρ1

. The inference rule (RD) for reading a tuple is similar except that
the matched tuple is not removed from the repository at l.

3.2.10 Remote evaluation

Rule (EVL) defines the spawning of process P ′ to an existing (possibly remote) site. In its most
rudimentary form, the inference rule roughly reads:

ρ1 l = i2
i1 :: (eval(P ′)@l, r).P || i2 :: E−→ i1 :: P || i2 :: E || i2 :: P ′

where for the allocation environments we adopt the convention as before. In order to establish
uniqueness of rate names, process P ′ has to be renamed prior to the spawning at l. The rate
mapping of the resulting net has to be adapted accordingly. The resulting refined inference rule
is listed in Table 5. Note that a dynamic scoping rule has been adopted (as in [12]); a static rule
is obtained if P ′ is closed using ρ1 before spawning.

5Note that the implementation of the dynamic scoping rule by means of eval as suggested e.g., in [12] (page
321) cannot be used here since sequentialization of several actions has a non-trivial impact on the timing aspects
of the modeled behaviour.
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(OUT)
ρ1 l = i2

β ` i1 ::ρ1 (out(~f)@l, r).P || i2 ::ρ2 E
(i1,o( ~f ′′,i2)),r−−−−−−−−−−→β′ ` i1 ::ρ1 P || i2 ::ρ2 E || i2 ::ρ2 〈 ~f ′′〉

where (~f ′, β′) = rename(~f, β) and ~f ′′ = [[~f ′]]ρ1

(IN)
ρ1 l = i2

i1 ::ρ1 (in(~F )@l, r).P || i2 ::ρ2 〈~f〉
(i1,i(~f,i2)),r−−−−−−−−−→ i1 ::ρ1 PΘ || i2 ::ρ2 nil

where match([[~F ]]ρ1
, ~f) = Θ

(RD)
ρ1 l = i2

i1 ::ρ1 (read(~F )@l, r).P || i2 ::ρ2 〈~f〉
(i1,r(~f,i2)),r−−−−−−−−−→ i1 ::ρ1 PΘ || i2 ::ρ2 〈~f〉

where match([[~F ]]ρ1
, ~f) = Θ

(EVL)
ρ1 l = i2

β ` i1 ::ρ1 (eval(P ′)@l, r).P || i2 ::ρ2 E
(i1,e(P ′′,i2)),r−−−−−−−−−−→β′ ` i1 ::ρ1 P || i2 ::ρ2 E || i2 ::ρ2 P ′′

where (P ′′, β′) = rename(P ′, β)

(NLC)
i2 ∈ I \ I l2 ∈ L \ L

I, L ` i1 ::ρ1 (newloc(!u), r).P (i1,n(i2)),r−−−−−−−−→ I ′, L′ ` i1 ::ρ′
1

P [l2/u] || i2 ::ρ2 nil

where I ′ = I ∪ {i2}, L′ = L ∪ {l2}, ρ′1 = ρ1 • [l2 7→ i2] and ρ2 = ρ′1 • [self 7→ i2]

(CLS)
I, L, β ` i1 ::ρ1•ρ2 P || N γ,r−−−→ I ′, L′, β′ ` i1 ::ρ′

1•ρ2 P ′ || N ′

I, L, β ` i1 ::ρ1 P{ρ2} || N γ,r−−−→ I ′, L′, β′ ` i1 ::ρ′
1

P ′{ρ2} || N ′

(PIN) X( ~!X ′, ~!u, ~!x) ∆= P I, L, β ` i ::ρ P ′ || N γ,r−−−→ I ′, L′, β′ ` N ′

I, L, β ` i ::ρ X( ~P ′′,~l, ~v) || N γ,r−−−→ I ′, L′, β′ ` N ′

where (P ′, β′) = rename(P [ ~P ′′/ ~X ′,~l/~u,~v/~x], β)

(CHO)
I, L, β ` i ::ρ P || N γ,r−−−→ I ′, L′, β′ ` N ′

I, L, β ` i ::ρ P + P ′ || N γ,r−−−→ I ′, L′, β′ ` N ′

(PAR)
I, L, β ` N1

γ,r−−−→ I ′, L′, β′ ` N ′

I, L, β ` N1 || N2
γ,r−−−→ I ′, L′, β′ ` N ′ || N2

(STC) β ` N ≡ β ◦ θ−1 ` N1 I, L, β ◦ θ−1 ` N1
γ,(θ r)−−−−−→ I ′, L′, β2 ` N2 β2 ` N2 ≡ β′ ` N ′

I, L, β ` N γ,r−−−→ I ′, L′, β′ ` N ′

Table 5: Reduction rules for StoKlaim
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3.2.11 Site creation

Rule (NLC) models the creation of a new node, with fresh address i2 and fresh locality l2. In its
most rudimentary form, the inference rule roughly reads:

i2 ∈ I \ I l2 ∈ L \ L

i1 ::ρ1 (newloc(!u), r).P −→ i1 ::ρ′
1

P [l2/u] || i2 ::ρ2 nil

As expected, all free occurrences of u in P are replaced by l2. Accordingly, the allocation environ-
ment in the nodes of the resulting net need to be adjusted. The new allocation environment ρ′1
extends the current environment ρ1 with mapping l2 to i2. Formally: ρ′1 = ρ1 • [l2 7→ i2]. Environ-
ment ρ2 equals ρ′1 except that self is bounded to i2 instead of i1, i.e., ρ2 = ρ′1•[self 7→ i2]. The oper-
ators [· 7→ ·] and • are formally defined as follows. For d1 ∈ D1 and d2 ∈ D2, [d1 7→ d2] : D1 → D2

is defined as:

[d1 7→ d2] d
def=

{
d2, if d = d1

undefined otherwise

and • : (D1 → D2)× (D1 → D2) → (D1 → D2):

(g1 • g2) d
def=

{
g2 d, if d ∈ (dom g2)
g1 d otherwise .

The complete inference rule is listed as rule (NLC) in Table 5.

3.2.12 Process closure

Rule (CLS) asserts that closure P{ρ2}, under allocation environment ρ1 behaves the same as P
under allocation environment ρ1 • ρ2. In practice this means that for any locality occurring in P ,
first an attempt is made to resolve the locality using ρ2 and, if this fails, the locality is resolved
using ρ1.

3.2.13 Process instantiation, choice and concurrency

The inference rules for these operators are completely standard, except that for process instanti-
ation a renaming needs to be performed.

3.2.14 Structural congruence

The final reduction rule concerns the replacement of nets by congruent ones. This is formalized
by rule (STC). It states that if N ≡ N1 and N1 may evolve into N2, with N2 ≡ N ′, then N
may evolve to N ′ performing “the same” transition. In practice, since structural congruence may
imply rate renaming, the transitions N1 → N2 and N → N ′ may differ in their rate-name, via
the (inverse of) the same rate-name substitution involved in the structural congruence (see law
(REN) in Table 1).

3.3 Differences with Klaim semantics

A major difference between the version of Klaim used here and, e.g., that in [12], is that here
processes are completely denied direct access to physical addresses. They can refer to them only
by means of logical addresses (and allocation environments). In [12], localities are kept only as
long as they are not evaluated, which occurs when they are either communicated—by means of
storing them into a tuple space—or used for pattern-matching. In fact, the semantics of the out
(in, respectively) action requires its argument to be evaluated before being stored in the specified
locality (using it in pattern-matching, respectively). On the other hand, the evaluation function
applied to a locality yields the physical address bound to the locality by the current allocation
environment. As a result, processes cannot receive localities but only physical addresses and,
consequently, they are forced to use only physical addresses, unless localities are constants. In
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practice, this means that there is no way for a process to send a locality to another process (e.g.,
the logical name of a service) and, in general, benefits of relative addressing are partially lost. The
same considerations apply to newloc(!u).P : in [12], the physical address of the newly created
node is used for directly replacing the occurrences of u in P .

3.4 Obtaining a CTMC

As a final step in the semantics, we present the details of obtaining a CTMC, in fact an action-
labeled CTMC, from a StoKlaim specification. Given the mapping presented so far onto labeled
transition systems, where transition labels are pairs of (ground) actions and rate names, this last
step is rather straightforward: basically rate names need to be turned into rates. This entails that
whenever c γ,r−−−→ c′ and c γ,r′

−−−→ c′, a single γ-labeled transition from configuration c to c′ should
be obtained with rate (β r) + (βr′).

An action-labelled CTMC (AMC) M is a triple (S, ACT, −→ ) where S is a set of states, ACT

is a set of actions, and −→ ⊆ S×(ACT ×R>0)×S is the transition relation. Transition s γ,λ−−−→ s′

means that the AMC may evolve from state s to s′ while performing action γ with an execution
time determined by an exponential distribution with rate λ. The total rate for going from s to s′

by performing action γ is defined by:

Rγ(s, s′) def=
∑

s
γ,λ−−−→ s′

λ .

Assume that the labeled transition system associated to the StoKlaim specification finite,
i.e., it is finitely branching and has a finite number of states6.

For net specification (β, N, ~D) with finite transition system (C,Λ, −→ , c0), let AMC(β, N, ~D) =
(S, ACT, −→ ) with:

• S = C

• ACT ⊆ I ×A, and

• c γ,λ−−−→ c′ if and only if 0 < λ =
∑

c
γ,r−−−→ c′

(βc r) .

4 Modeling and analysis of the spreading of a virus

In this section we show how StoKlaim can be used for modeling the spreading of a virus in a
network. The example we present has been inspired by a similar one in [16].

We model a network as a set of sites and the virus running on a site can move arbitrarily
from the current site to others, infecting them. At each site, an instance of the operating system
runs, which, upon receiving the virus, can either run it or suppress it. In this paper, for the sake
of simplicity, we consider simple networks which are in fact grids of n × m sites. Each site is
connected with its four neighbors (north, south, east, west), except for border sites, which lack
some connections in the obvious way (e.g. the sites on the east border have no east connection).
Moreover, we assume that the virus can move only to one adjacent site. Finally, we refrain from
modeling aspects of the virus other than the way it replicates in the network. In particular we do
not consider the local effects of the virus and we make the virus die as soon as it has infected one
of the neighbors of its site. Similarly, we abstract from all details of the operating system, except
those directly dealing with the virus.

The process definitions for the virus V and the operating system running at each node are given
in Fig. 1. For the sake of notational simplicity, a matrix-like notation is used for the (definitions
of the) operating system (processes) Ojk, with (1 ≤ j ≤ n, 1 ≤ k ≤ m). Once activated, at site

6There are several ways for assuring finiteness of transition systems obtained from process algebras; see, e.g., [17].
We will not dwell further upon this issue here.
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V
∆= ((out(V )@north, rn).nil) +

((out(V )@south, rs).nil) +
((out(V )@east, re).nil) +
((out(V )@west, rw).nil)

Ojk
∆= ((in(!X)@self, ujk).(eval(X)@self, rjk).Ojk) +

((in(!X)@self, djk).Ojk)

Figure 1: Specification of an infected network

(with address) ijk, the virus sends a copy of itself to either of the neighbors of its site, the choice
being nondeterministic. The allocation environment ρjk of site ijk is the expected one: for a grid
of n×m sites we have the following definition for ρjk:

ρjkl =


ij−1,k if l = north and j > 1
ij+1,k if l = south and j < n
ij,k+1 if l = east and k < m
ij,k−1 if l = west and k > 1

Notice that for sites ‘at the boarder’ (like i12) the allocation environment is defined only for those
directions which don’t point ’outside the grid’ itself (for instance ρ12 is not defined on north).
Consequently, when the virus is running on such a site, those alternatives which would make it try
to send its own code ’outside the grid’ will simply be discarded, as no reduction rule is applicable.
The output rate toward north (south, east, west, resp.) is established by rn (rs, re, rw, resp.).
Notice that the dynamic scoping rule for the output action (see remarks on page 11) is used for this
example: when the virus running at site ijk uploads a copy of its code to a different site ij′k′ , the
localities of such a copy, when in execution, will be resolved using the allocation environment of
the remote site ij′k′ . The definition of Ojk postulates that Ojk may receive the virus and execute
it, with probability given by ujk

ujk+djk
, or detect and discard it after receiving it, of course with

probability djk

ujk+djk
. The rate of launching the execution of the virus is given by rjk. For a system

with nine sites, i.e. for n = m = 3, the network component N0 of the initial configuration is the
following:

i11 ::ρ11 〈V 〉 || (|| 1 ≤ j ≤ 3
1 ≤ k ≤ 3

ijk ::ρjk
Ojk)

A graphical representation of N0 is given in Fig 2. Site ijk is represented by a square box annotated
with ijk; the data (running processes, resp.) of the site are displayed in the inner upper (inner
lower) part of the box while each locality l on which ρjk is defined is used as the label of an
arrow pointing to the site (with physical address) ρjk l. The locality (address, resp.) set (Loc N0)
((Adr N0), resp.) corresponding to N0 is {north, south, east, west} ({ij,k | 1 ≤ j ≤ 3, 1 ≤ k ≤ 3},
resp.). Let us assume that the operating systems of the sites on the diagonal from bottom-left
to top-right—O31, O22, and O13—have a relatively high rate of detection and can be considered
as a firewall to protect the sites i32, i33, and i23. For instance, let β0 be defined as follows:
β0 rn = β0 rs = β0 re = β0 rw = 2, β0 rjk = 2 for 1 ≤ j, k ≤ 3, β0 d31 = β0 d22 = β0 d13 = 10,
and β0 dij = 1 otherwise, β0 u31 = β0 u22 = β0 u13 = 1, and β0 ujk = 10 otherwise (notice as
β0 d31 >> β0 u31 and similarly for site i22 and i13). The LTS associated to the above StoKlaim
specification is shown in Fig. 3. For readability reasons we use the following conventions: (i)
transitions are labeled with the associated rate-names only, since the action involved can easily
be deduced from the context; (ii) details such as allocation environments or rate mappings are
not shown, for the same reason; (iii) each state of the network is represented as a square box
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Figure 2: Initial configuration

with nine sectors: a blank sector jk corresponds to ijk ::ρjk
Ojk, i.e. a normally running node; a

black triangle in sector jk corresponds to the expression ijk ::ρjk
Ojk || ijk ::ρjk

〈V 〉, i.e. a node
which has been infected; a thick × in sector jk corresponds to ijk ::ρjk

(eval(V )@self, rjk).Ojk,
i.e. a node which is going to run the virus; and ijk ::ρjk

Ojk || V —i.e. the virus is running at the
node—is represented by a black sector jk. By means of standard transient analysis of the CTMC
associated to the LTS of Fig. 3, we can compute the probability that the virus is executing on site
i33 by time t, i.e. the probability of state 27 of the CTMC (associated to the LTS) of the picture7.
Such a probability is less then 10−5 for t = 1 and grows up to 0.01147 after 10 time units passed,
remaining essentially the same (0.01152) for t = 100, showing an acceptable detection power of
the firewall.

As we already mentioned in Sect. 1, in [13] we present a logic which allows the integrated
formal characterization of functional temporal properties and non-functional ones, as those typical
of CTMC stationary and transient analysis. Moreover, proper model-checking algorithms for
the logic allow for their the automatic verification against CTMC generated from StoKlaim
specifications.

5 Related Work

In our proposal for StoKlaim, at a conceptual level, we follow essentially the same approach
as Priami in [27] where he extends the π-Calculus with stochastic features. There is however
a key difference between our work and the above mentioned one. In fact, the basic model of
interaction of π-Calculus processes is synchronous, while that of Klaim processes is asynchronous.
Synchronization of actions with exponentially distributed durations poses non-trivial problems to
the compositional definition of the operational semantics when the intuition on action execution
times is to be preserved by composition operators. For an interesting discussion on the subject we
refer the reader to [7]. The choice of using an asynchronous model of interaction as the underlying
model for stochastic behaviour allows for a rather simple definition of the operational semantics.
Moreover it preserves a direct relation between the rates assigned to actions in specifications and
those assigned to them in the automata models associated to such specifications. Such a relation is

7The reader should remember that the states of the LTS associated to a StoKlaim specification coincide with
those of the related CTMC.
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Figure 3: LTS for the virus example
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more involving in approaches based on synchronous models of interaction due to rate/probability
normalization procedures required by such models. Of course, the above advantages come at the
price of dropping component synchronization as a primitive interaction mechanism. However,
experience has shown that many fundamental behavioural aspects of mobile, cooperating agents
in distributed networks can be satisfactorily described and analyzed by relying on asynchronous
models of interaction [12, 5].

On a more technical level, another peculiarity of our approach is the fact that the definition
of the operational semantics of the language is based on a structural congruence which includes,
among others, commutativity and associativity of (network and) process parallel composition, non-
deterministic choice, and absorption. The use of such “coarser” structural congruences greatly
simplifies the definition of the operational semantics of locality-based, Klaim-like languages. By
using approaches which rule out commutativity and associativity of parallel and choice opera-
tors, one cannot easily exploit the locality-based pattern matching style which is typical of the
operational semantics definition of Klaim-like languages.

In [16] a probabilistic discrete- (resp. continuous-) time extension of full Klaim has been
proposed. In that proposal, basically, all sources of non-determinism in the notation have been
enriched with probabilistic information. In particular, (process) choice and parallel composition
operators have been replaced by their probabilistic counterparts and, in the discrete-time case,
probabilities have been added also to the network nodes used in network composition. Intuitively,
the probability attached to nodes is related to the scheduling criteria at the global network level
and extends the scheduling probability defined by the process parallel composition operator at
the node level. In the continuous time case, rates of exponential distributions are associated to
nodes, which are related to the execution time of any action in the node. Finally, the mappings of
logical to physical addresses (i.e. Klaim allocation environments) have been replaced by mappings
from logical addresses to probability distributions on physical ones. Our proposal is orthogonal
to this approach in the sense that non-deterministic and parallel operators are left unchanged
while specific rates are associated to each action, so that the former are features of the specific
actions rather than of the site where the actions are executed. This gives rise to a clean semantic
model which directly reflects the modeling choices expressed at the specification level, whereas
the probabilities of different alternatives of choice, parallel, or network compositions are derived
on the basis of the race condition principle [27]. In the proposal of [16] the specifier has several
different conceptual tools and related linguistic constructs for expressing probabilistic information.
On the other hand there is a certain interference among such concepts which results in several
normalization steps. As a result, the relationship between the specific probability/rate values
used in a specification and those resulting in the associated semantical structure can be quite
complicated.

In [21] a probabilistic extension of the asynchronous π-Calculus is proposed, which does not
address time and continuous distributions.

In [20] PEPA nets are proposed, where mobile code is modeled by expressions of the stochastic
process algebra PEPA which play the role of tokens in (stochastic) Petri nets. The Petri net of
a PEPA net models the architecture of the net, which to our understanding, is a static one. A
PEPA expression can move from one place to another if there is a transition from the first place
to the second. A proper synchronization mechanism between PEPA expressions and Petri nets is
provided in order to fire transitions (i.e. to allow for code mobility).

In [8], a proposal for quantitative extensions of a tuple-based, Linda-like language is presented
which includes the enrichment of the tuple space with probabilistic information attached to the
tuples stored in the space. Such probabilities are represented by means of weights associated
to tuples. The underlying semantic model is that of probabilistic transition systems. Interesting
results are presented concerning the expressive power of the resulting language. The issue of action
durations and underlying CTMCs is not addressed.

Finally, in [15] a preliminary version of StoKlaim has been proposed which extends a strict
subset of Klaim. In particular logical addresses as well as allocation environments are not dealt
with in [15], data are restricted to localities and templates are restricted to only one variable.

We are not aware of other proposals for stochastic/probabilistic calculi for mobile systems.

18



6 Conclusions and Future Work

In this paper we presented StoKlaim, a stochastic extension of Klaim, that makes it possible
to integrate the modeling of quantitative and qualitative aspects of mobile systems.

The starting point of our proposal is to use continuous random variables with exponential
distributions for modeling action durations in StoKlaim processes.

We presented the formal operational semantics for StoKlaim that associates an LTS to each
StoKlaim specification and we showed how the LTS can be transformed into a Continuous Time
Markov Chain (CTMC).

For illustrating the technique we worked out a small example modeling the spreading of a virus
through a network. We gave an example of quantitative measure, namely the velocity of spreading
of the virus that would be of interest for automatic verification using stochastic model checking
techniques.

The results in this paper show that the choice of an asynchronous model of computation for
the base-language greatly simplifies the definition of the operational semantics of the stochastic
extension. Such definition is further simplified by the fact that the auxiliary structural congruence
includes, among others, associativity and commutativity of parallel and non-deterministic oper-
ators. These advantages are not restricted to Klaim, but can be exploited for other languages
based on an asynchronous model of interaction, s.a. Linda-based languages.

The ideas proposed in this paper give rise to a whole range of related interesting research
questions. First of all, proper tools for supporting system modeling and verification based on
StoKlaim and a proper temporal logic should be developed. The logic is addressed in [13] where
a translation of a relavant fragment into aCSL—an action based version of the stochastic temporal
logic CSL [1, 3] proposed in [23]—is defined as well. The logic is an extension of the one proposed
in [14] for the simplified language described in [15]

Second, the modeling language should be extended in order to cover the recent extensions of
Klaim, e.g. dynamic connections.

Further extensions concern the inclusion of rate-variables which would make it possible to
dynamically modify the rates at which actions take place. Moreover, the inclusion of probabilistic
operators, like probabilistic choice and probabilistic parallel composition, would certainly increase
the expressive power of the language.

The explicit representation of non-determinism, by means of eliminating the race-condition
assumption, would open the way to more realistic models, although in that case CTMCs can no
longer be used as semantic model and other, richer, models like Markov Decision Processes [28],
would be needed.

Similarly, the possibility of using distributions different from exponential ones would greatly
increase the class of behaviours which can be modeled, requiring different analysis techniques
such as discrete event simulation and the possibility of integrating the specification and use of
Phase-Type distributions [26] in StoKlaim specifications.
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