
Team Automata for Security Analysis

Maurice H. ter Beek
Istituto di Scienza e Tecnologie dell’Informazione, CNR

Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
maurice.terbeek@isti.cnr.it

Gabriele Lenzini
Department of Computer Science, University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands
lenzinig@cs.utwente.nl

Marinella Petrocchi
Istituto di Informatica e Telematica, CNR

Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
marinella.petrocchi@iit.cnr.it

Abstract

We show that team automata (TA) are well suited for
security analysis by reformulating the Generalized Non-
Deducibility on Compositions (GNDC) schema in terms of
TA. We then use this to show that integrity is guaranteed
for a case study in which TA model an instance of the Effi-
cient Multi-chained Stream Signature (EMSS) protocol.

1. Introduction

There is an increasing interest in using automata-based
models for the formal specification and analysis of security
properties of communication protocols [11, 16, 18, 21]. We
continue this line of research by showing how to use team
automata (TA) [3] for such security analysis.

TA form a flexible framework for modelling communi-
cation between system components [2, 3, 15]. They model
the logical architecture of a system by describing it in terms
of (component) automata, the role of actions, and synchro-
nizations between these actions. The crux of composing a
TA is to define the way in which its constituting component
automata (CA) communicate by synchronizations. Hence
there exists no unique TA given a set of CA, but rather
a whole range of TA can be constructed from such a set.
Which one to choose can thus be based on the specific com-
munication protocol to be modelled. It is this freedom that
sets TA apart from most other models (cf. Sect. 2.1 for a

brief comparison of TA with some models of concurrency).
In [5], e.g., we showed how this allows TA to model multi-
cast and broadcast communications in a very natural way.

In [5] we initiated a very preliminary investigation on
defining the Generalized Non-Deducibility on Composi-
tions (GNDC) schema in terms of TA. This is a gen-
eral schema for defining and analyzing security properties,
which was originally formalized in [9] for a cryptographic
version of the process algebra CCS. A formal model P of
a system (e.g., a protocol) is said to satisfy GNDC α(P)

/ if
and only if P , despite the fact that it interacts with a hos-
tile environment, appears indistinguishable (w.r.t. a notion
/ of external observation) from the expected (i.e., correct)
behaviour α(P) of P . By varying the parameters / and α,
many security properties can be formulated and analyzed
within this theory [8, 9, 10, 20].

In this article we complete our preliminary investigation
by reformulating the GNDC schema in terms of TA and thus
equip TA with a theory for security analysis. As an applica-
tion, we verify the property of integrity for a case study in
which TA model an instance of the Efficient Multi-chained
Stream Signature (EMSS) protocol [22].

The article is organized as follows. In Sect. 2 we define
TA. In Sect. 3 we describe a case study modelling an in-
stance of the EMSS protocol by TA. We then describe an
insecure communication scenario in Sect. 4, after which we
reformulate the GNDC schema in terms of TA in Sect. 5.
We then use this in Sect. 6 to analyze integrity in our case
study and conclude the paper.

2. Team Automata

We begin this section by fixing some notations and ter-
minology used throughout this article, after which we recall
some definitions and results concerning TA from [3, 4].

For convenience we denote the set {1, . . . , n} by [n].
The (cartesian) product of sets Vi, with i ∈ [n], is de-
noted by

∏
i∈[n] Vi. In addition to the prefix notation, we

also use the infix notation V1×· · ·×Vn. For j ∈ [n], projj :∏
i∈[n] Vi → Vj is defined by projj((a1, . . . , an)) = aj .

The powerset of a set V is denoted by 2V .
Let Σ and Γ be two sets of symbols. Then the projection

presΣ,Γ : Σ → Γ∗, defined by presΣ,Γ(a) = a if a ∈ Γ and
presΣ,Γ(a) = λ otherwise, preserves the symbols from Γ
and erases all other symbols. Whenever Σ is clear from the
context, we simply write presΓ rather than presΣ,Γ.

Let f : A → A′ and g : B → B′ be functions. Then
f × g : A × B → A′ × B′ is defined as (f × g)(a, b) =
(f(a), g(b)). We use f [2] as shorthand for f × f .

Definition 1 An automaton is a construct A=(Q, Σ, δ, I),
with set Q of states, set Σ of actions, Q ∩ Σ = ∅, set δ ⊆
Q × Σ × Q of transitions, and set I ⊆ Q of initial states.

The set CA of computations of A is defined as consist-
ing of all the sequences α = q0a1q1 · · · anqn, where n ≥ 0
and q0 ∈ I , and for all i ∈ [n], qi ∈ Q, ai ∈ Σ, and
(qi−1, ai, qi) ∈ δ.

The Γ-behaviour B
Γ
A of A, with Γ ⊆ Σ, is defined as

B
Γ
A = presΓ(CA).

The Σ-behaviour of A is also called the behaviour of
A, in which case Σ may be discarded from the notation.
Let a ∈ Σ. The set δa of a-transitions of A is defined as
δa = {(q, q′) | (q, a, q′) ∈ δ}. Finally, note that behavioural
inclusion defines a preorder relation on automata.

A TA is composed of component automata (CA), which
are ordinary automata without final states and with a dis-
tinction of their sets of actions into input, output and inter-
nal actions. Their internal actions have strictly local visibil-
ity and cannot be used for communication with other CA.
Their input and output actions are observable by other CA
and are used for communication between CA.

Definition 2 A component automaton (CA) is a construct
C = (Q, (ΣC

inp, Σ
C
out, Σ

C
int), δ, I), with underlying automa-

ton (Q, ΣC
inp ∪ΣC

out ∪ΣC
int, δ, I) and pairwise disjoint sets

ΣC
inp of input, ΣC

out of output, and ΣC
int of internal actions.

ΣC denotes the set ΣC
inp ∪ ΣC

out ∪ ΣC
int of actions of C

and ΣC
ext denotes its set ΣC

inp∪ΣC
out of external actions. We

discard C from these notations when no confusion can arise.
For the sequel we let S = {Ci | i ∈ [n]} be an arbitrary

but fixed set of CA specified as Ci = (Qi, (Σi,inp, Σi,out,
Σi,int), δi, Ii), with set Σi = Σi,inp ∪Σi,out ∪Σi,int of ac-
tions and set Σi,ext = Σi,inp ∪ Σi,out of external actions.

When composing TA over S, the internal actions of
the CA in S must be private, i.e., ∀ i ∈ [n] : Σi,int ∩⋃

j∈([n]−{i}) Σj = ∅. Such an S is called a composable
system. For the sequel we let S be a composable system.

The state space of a TA composed over S is the prod-
uct of the state spaces of the CA from S. Its actions, conse-
quently, are uniquely determined by the actions of the CA
from S. Each action that is output (internal) for one or more
of the CA becomes an output (internal) action of the TA.
Hence an action that is an output action of one CA and also
an input action of another CA, is considered an output ac-
tion of the TA. The input actions of the CA that do not occur
at all as an output action of any of the CA, become the in-
put actions of the TA. The transitions of the TA, finally, are
based on but not fixed by those of the CA from S by allow-
ing certain synchronizations, while excluding others.

Definition 3 Let a ∈
⋃

i∈[n] Σi. The set ∆a(S) of synchro-
nizations of a is defined as ∆a(S) = {(q, q′) ∈

∏
i∈[n] Qi×

∏
i∈[n] Qi | [∃ j ∈ [n] : projj

[2](q, q′)∈ δj,a] ∧ [∀ i∈ [n] :

[proji
[2](q, q′) ∈ δi,a] ∨ [proji(q) = proji(q

′)]] }.

∆a(S) thus consists of all possible combinations of a-
transitions of CA from S, with all non-participating CA re-
maining idle. It is explicitly required that in every synchro-
nization at least one CA participates. The state change of a
TA over S is defined by the local state changes of the CA
from S participating in the action of the TA being executed.
Hence, when defining a TA, a specific subset of ∆a(S) must
be chosen for each action a. This enforces a certain kind of
communication between the CA constituting the TA.

Definition 4 A team automaton (TA) over S is a construct
T = (Q, (ΣT

inp, Σ
T
out, Σ

T
int), δ, I), with Q =

∏
i∈[n] Qi,

ΣT
inp = (

⋃
i∈[n] Σi,inp) − ΣT

out, ΣT
out =

⋃
i∈[n] Σi,out,

ΣT
int =

⋃
i∈[n] Σi,int, δ ⊆ Q×ΣT ×Q, where ΣT = ΣT

inp∪

ΣT
out∪ΣT

int, is such that {(q, q′) | (q, a, q′) ∈ δ} ⊆ ∆a(S),
for all a ∈ ΣT , and {(q, q′) | (q, a, q′) ∈ δ} = ∆a(S), for
all a ∈ ΣT

int, and I =
∏

i∈[n] Ii.

Each choice of synchronizations thus defines a TA. It is
important to observe that every TA is again a CA, which
in its turn can be used as a CA in an iteratively composed
TA. In this way one can construct, e.g., a TA T ′ over the
composable system {T ′′, C3}, where T ′′ is a TA composed
over the composable system {C1, C2}. TA can thus be used
as building blocks. In order to do so, two important issues
must be dealt with.

First it may be necessary to internalize certain external
actions of a TA before using this TA as a building block, in
order to prohibit the use of these actions on a higher level
of the construction (we moreover assume that such actions
are indexed in order to satisfy composability).

2

Definition 5 Let T = (Q, (Σinp, Σout, Σint), δ, I) be a TA
and let Γ ⊆ Σext. Then hideΓ(T) = (Q, (Σinp −Γ, Σout −
Γ, Σint ∪ Γ), δ, I).

In hideΓ(T), the subset Γ of external actions of T have
thus become unobservable for other TA by turning them
into internal actions. Without formally defining renaming,
we assume that these actions are indexed by the TA in or-
der to guarantee composability.

Secondly, it must be possible to construct unique TA of
a specified type. In [3] several fixed strategies for choosing
the synchronizations of a TA were defined, each leading to a
uniquely defined TA. These strategies fix the synchroniza-
tions of a TA by defining, per action a, certain conditions
on the a-transitions to be chosen from ∆a(S), thus deter-
mining a unique subset of ∆a(S) as the set of a-transitions
of the TA. Such subsets are referred to as predicates for a.
Once predicates have been chosen for all actions, the TA
over S defined by such a predicate is unique.

Definition 6 Let a ∈
⋃

i∈[n] Σi. The predicate is-ai for a in

S, denoted by Rai
a (S), is defined as Rai

a (S) = {(q, q′) ∈
∆a(S) | ∀ i ∈ [n] : [a ∈ Σi ⇒ proji

[2](q, q′) ∈ δi,a]}.

The predicate Rai
a (S) thus contains all and only those a-

transitions from ∆a(S) in which every CA with a as an ac-
tion participates. Hence the TA over S defined by this pred-
icate is the unique TA in which any execution of a sees the
participation of all CA having a in their set of actions.

Definition 7 Let Rai = {Rai
a (S) | a ∈

⋃
i∈[n] Σi}. Then

T = (Q, (Σinp, Σout, Σint), δ, I) is the max-ai TA over S,
denoted by ||| S, if δa = Rai

a (S), for all a ∈
⋃

i∈[n] Σi.

Remark 1 ([3]) The behaviour of an iteratively composed
max-ai TA is equal to that of the max-ai TA over the under-
lying CA, i.e., continuing our above example: if T ′ and T ′′

are the max-ai TA over {T ′′, C3} and {C1, C2}, resp., and
T is the max-ai TA over {C1, C2, C3}, then BT ′ = BT .

Remark 2 If {T , T } is a composable system, then trivially
B ||| {T ,T } = BT .

A TA is said to satisfy compositionality if its behaviour
can be described in terms of that of its constituting CA, i.e.,
when the traces forming the behaviour of a set of CA can be
shuffled in such a way that the traces forming the behaviour
of a particular TA over these CA result.

Definition 8 The full synchronized shuffle ||
{∆i|i∈[n]}

Li

of Li ⊆ ∆∗
i , with i ∈ [n], is defined as ||

{∆i|i∈[n]}
Li =

{w ∈ (
⋃

i∈[n] ∆i)
∗ | ∀ i ∈ [n] : pres∆i

(w) ∈ Li}.

In [4] it was shown that the construction of TA according
to certain natural types of synchronization, among which
the one leading to max-ai TA, guarantees compositionality.

Theorem 1 (Compositionality of TA [4]) Let T be the
max-ai TA over S. Then BT = ||

{Σi|i∈[n]}
BCi

.

2.1. TA in Relation to Other Models

TA are not an isolated model, but instead possess several
features that bear a close resemblance to other models from
the literature. In this section we briefly discuss the relation-
ship between TA and two models of concurrency. To begin
with, TA are an extension of (safe) Input/Output Automata
(IOA) [19]. However, contrary to TA, IOA are input enabled
(i.e., in each state it must be possible to execute every in-
put action). Furthermore there is no unique TA composed
over a set of CA, but a whole range of TA—distinguishable
only by their synchronizations—can be composed over this
set of CA. Given a set of IOA, on the other hand, an IOA
over this set is constructed according to the is-ai predicate
defined above, which results in IOA that are uniquely de-
fined by their constituents. Finally, IOA do not allow syn-
chronizations of output actions, whereas TA do.

TA are furthermore related to Petri nets. Since the syn-
chronizations in TA describe state changes caused by global
team actions, the operational semantics in terms of TA com-
putations is of a sequential nature and does not reflect the
fact that TA are distributed systems. If we switch from
global (team) actions to vectors of (component) actions,
however, then we obtain the local information from which
we can immediately extract exactly which of the CA par-
ticipate in a team synchronization. The resulting vector TA
visualize the potential concurrency within TA and thus re-
late TA to Petri nets. In fact, in [15] it was shown that a
subset of vector TA can be translated to a particular model
of vector-labelled Petri nets from the framework of Vector
Controlled Concurrent Systems (VCCSs) [13], viz. to the
Individual Token Net Controllers (ITNCs) [14].

The idea underlying VCCSs is to use vectors both to
specify the elementary synchronizations within a system
and to describe its behaviour. This approach was inspired
by the vector firing sequence semantics of COSY [12] and
is related to the coordination of cooperating automata by
synchronization on multisets [1]. Several differences remain
between vector TA and ITNCs. Contrary to vector TA, IT-
NCs allow fundamentally different actions to synchronize.
In this respect, ITNCs thus allow the modelling of more
types of synchronization than (vector) TA do. However, IT-
NCs do not distinguish between input, output, and internal
actions, which is a crucial modelling feature of (vector) TA.

3. A Case Study: the EMSS Protocol

This section shows how an instance of the EMSS pro-
tocol can be modelled in terms of TA. The EMSS protocol
was introduced in [22] and is used to sign digital streams. It
exploits a combination of hash functions and digital signa-
tures and achieves some robustness against packet loss, i.e.,

3

an incompletely received stream still allows the user to ver-
ify the integrity of the packets that were not lost.

Actually, EMSS is a family of protocols and here
we focus on its deterministic (1,2) schema. We as-
sume that a sender S wants to send a stream of pay-
loads m0, m1, . . . , mlast to a set of receivers {Rn | n ≥ 1}
(as is usual for recipients of digital data streams, the re-
ceivers are not able to communicate among each other).
The protocol then requires S to send triples built from pay-
loads (called packets) to the receivers. After an ini-
tial phase, each packet Pi contains a meaningful payload
mi (we assume that the private sender key sk(S) can-
not be deduced from {mi | 0 ≤ i ≤ last}), together with
the hashes h(Pi−1) and h(Pi−2) of the previous two pack-
ets sent. The end of a stream is indicated by a signature
packet Psign containing the hashes of the final two pack-
ets, along with a digital signature. In this way, some
robustness against packet loss is achieved. The proto-
col can formally be described as follows, with 2 ≤ i ≤ last.

S
P0−→ {Rn |n≥1} : packet P0 = 〈m0, ∅, ∅〉

S
P1−→ {Rn |n≥1} : packet P1 = 〈m1, h(P0), ∅〉

S
Pi−→ {Rn |n≥1} : packet Pi = 〈mi, h(Pi−1), h(Pi−2)〉

S
Psign
−→ {Rn |n≥1} : packet Psign =

〈{h(Plast), h(Plast−1)}sk(S)〉

3.1. The EMSS Protocol Modelled by TA

We now show how TA can be used to model the EMSS
protocol. We model the sender S by a CA TS and the set
{Rn | n ≥ 1} of receivers by n copies T

(1)
R , . . . , T

(n)
R

of a CA TR (we assume the internal actions of each T
(i)
R

to be indexed in order to satisfy composability). TS uses
its private key sk(TS) and a public key pk(TS) to per-
form digital signature operations. Let Payloads denote the
set {m0, m1, . . . , mlast} of meaningful payloads and let
Payloads′ denote the set {m′

0, m
′
1, . . . , m

′
last} of variables

m′
i that should contain the meaningful payloads mi, with

0 ≤ i ≤ last. Then TS uses the hash function h :
Payloads → Hashed, while TR uses the hash function h̄ =
h. Moreover, TS uses the function s : 2Hashed → Signed,
defined by s(H) = Hsk(TS), to sign sets of hashed payloads
with its private key sk(TS), whereas TR uses the function
s̄ : Signed → {true, false} and the public key pk(TS) to
verify whether a set of hashed payloads was signed by TS .

We specify TA in the way IOA are commonly de-
fined [18, 19]. The states of a TA are thus defined by
the current values of the variables listed under States,
while its transitions are defined, per action a, as precon-
ditions (Pre) and effect (Eff), i.e., (q, a, q′) is a transi-
tion of a TA if the precondition of a is satisfied by q,
while q′ is the transformation of q defined by the ef-

fect of a. We omit the precondition (effect) of an action
when it is true.

TS

Actions
Inp: ∅

Out: {

P0
z }| {

〈m0, ∅, ∅〉,

P1
z }| {

〈m1, h(P0), ∅〉}∪{

Pi
z }| {

〈mi, h(Pi−1), h(Pi−2)〉 |
2 ≤ i ≤ last} ∪ {〈{h(Plast), h(Plast−1)}sk(TS)〉

| {z }

Psign

}

Int: {Hashi | 0 ≤ i ≤ last} ∪ {Sign}

States
sent ⊆ Payloads, hashed ⊆ Hashed, signed ⊆ Signed, all ini-
tially ∅

Transitions
P0

Pre: P0 /∈ sent

Eff: sent := sent ∪ {P0}

Hashi, 0 ≤ i ≤ last
Pre: Pi ∈ sent ∧ h(Pi) /∈ hashed

Eff: hashed := hashed ∪ {h(Pi)}

P1

Pre: h(P0) ∈ hashed ∧ P1 /∈ sent

Eff: sent := sent ∪ {P1}

Pi, 2 ≤ i ≤ last
Pre: {h(Pi−1), h(Pi−2)} ⊆ hashed ∧ Pi /∈ sent

Eff: sent := sent ∪ {Pi}

Sign
Pre: h(Plast) ∈ hashed ∧ s({h(Plast), h(Plast−1)}) /∈ signed

Eff: signed := signed ∪ {s({h(Plast), h(Plast−1)})}

Psign

Pre: {h(Plast), h(Plast−1)}sk(TS) ∈ signed ∧ Psign /∈ sent

Eff: sent := sent ∪ {Psign}

Clearly TS has no input behaviour, while its output be-
haviour B

Σout

TS
consists of all prefixes of P0P1 · · ·PlastPsign.

To actually send the packets P0, P1, . . . , Plast, Psign in this
order, TS must perform some internal computations, which
is reflected by the fact that its internal behaviour BΣint

TS
con-

sists of all prefixes of Hash0Hash1 · · ·HashlastSign.
We continue with the specification of TR. It is

capable of receiving as input behaviour all packets
P0, P1, . . . , Plast, Psign, built over the set Payloads′ of vari-
ables m′

i that should contain the meaningful payloads
mi. Upon receiving Pi, TR verifies whether it has re-
ceived Pi−1. First consider that TR indeed received
Pi−1. Then it extracts the hash h(Pi−1) from Pi, com-
putes the hash h̄(Pi−1), and compares these two hashes.
If they are equal, then the variable m′

i−1 that should con-
tain the verifiable payload mi−1 is extracted from Pi−1.
Otherwise TR has no output behaviour.

Secondly, consider that TR did not receive Pi−1. Then
it verifies whether it has received Pi−2. If it did not, then

4

TR concludes that it is unable to check the hashes of ei-
ther Pi−1 or Pi−2, so it goes on to verify whether it has re-
ceived Pi+1. If TR did receive Pi−2, then it extracts the hash
h(Pi−2) from Pi, computes the hash h̄(Pi−2), and com-
pares these two hashes. If they are equal, then the variable
m′

i−2 that should contain the verifiable payload mi−2 is ex-
tracted from Pi−2. Otherwise TR has no output behaviour.

Eventually TR receives the signature packet Psign (we as-
sume that Psign is always received, but in the specification
of TR we sometimes check if Psign has already been re-
ceived to avoid a transition to take place before Psign has
actually been received), after which it verifies the accompa-
nying digital signature (we assume that TR has previously
retrieved the public key pk(TS) corresponding to the private
key sk(TS)), before repeating the above procedure. The ver-
ification of the signature allows TR to have guarantees on
the integrity of the stream of verifiable payloads collected
in xtractedM, which is consequently sent to the application
level as the output behaviour of TR.

Note that in the specification of TS we explicitly mod-
elled that each of its actions is enabled only once during a
computation, thus prohibiting loops. For example, as soon
as TS has sent P0, then this action’s precondition P0 /∈ sent

prohibits this action to be executed again. For the sake of
readability, we omit the addition of such preconditions to
the specification of TR, but implicitly assume that its ac-
tions are executed only once during a computation.

TR

Actions

Inp: {

P0
z }| {

〈m′

0, ∅, ∅〉,

P1
z }| {

〈m′

1, h(P0), ∅〉}∪{

Pi
z }| {

〈m′

i, h(Pi−1), h(Pi−2)〉 |
2 ≤ i ≤ last} ∪ {〈{h(Plast), h(Plast−1)}sk(TS)〉

| {z }

Psign

}

Out: Payloads′

Int: {XtractHi, XtractMi, Hashi |0≤ i≤ last} ∪ {Verify, Stream}

States
received,xtractedM ⊆ Payloads′, xtractedH,hashed ⊆ Hashed,
all initially ∅, verified,send⊆{true, false}, both initially false

Transitions
Pi, 0 ≤ i ≤ last

Eff: received := received ∪ {Pi}

XtractHi,1, 1 ≤ i ≤ last
Pre: {Pi−1, Pi} ⊆ received

Eff: xtractedH := xtractedH ∪ {h(Pi−1)}

XtractHi,2, 2 ≤ i ≤ last
Pre: [{Pi−2, Pi} ⊆ received] ∧ [Pi−1 /∈ received]
Eff: xtractedH := xtractedH ∪ {h(Pi−2)}

Psign

Eff: received := received ∪ {Psign}

Verify
Pre: [Psign ∈ received]

∧ [s̄({h(Plast), h(Plast−1)}sk(TS)) = true]

Eff: verified := true

XtractHsign,1

Pre: [{Plast, Psign} ⊆ received] ∧ [verified = true]
Eff: xtractedH := xtractedH ∪ {h(Plast)}

XtractHsign,2

Pre: [{Plast−1, Psign} ⊆ received]
∧ [Plast /∈ received] ∧ [verified = true]

Eff: xtractedH := xtractedH ∪ {h(Plast−1)}

Stream
Pre: [[m′

last ∈ xtractedM] ∨ [[m′

last−1 ∈ xtractedM]
∧ [Plast /∈ received]]] ∧ [verified = true]

Eff: send := true

XtractMi, 0 ≤ i ≤ last
Pre: [h(Pi) ∈ xtractedH]

∧ [h̄(Pi) ∈ hashed] ∧ [h̄(Pi) = h(Pi)]
Eff: xtractedM := xtractedM ∪ {m′

i}

Hashi, 0 ≤ i ≤ last
Pre: h(Pi) ∈ xtractedH

Eff: hashed := hashed ∪ {h̄(Pi)}

m′
0

Pre: [send = true] ∧ [m′

0 ∈ xtractedM]
Eff: xtractedM := xtractedM − {m′

0}

m′

i, 1 ≤ i ≤ last
Pre: [send = true] ∧ [m′

i ∈ xtractedM]
∧ [{m′

k | 0 ≤ k < i} ∩ xtractedM = ∅]
Eff: xtractedM := xtractedM − {m′

i}

Clearly the input behaviour B
Σinp

TR
of TR con-

sists of all prefixes of all possible permutations of
P0P1 · · ·PlastPsign. When TR actually receives the pack-
ets P0, P1, . . . , Plast, Psign in this particular order, then TR

is able to perform a series of internal computations, re-
flected by the fact that its internal behaviour BΣint

TR
contains

XtractH1,1 Hash0 XtractM0 XtractH2,1 Hash1 XtractM1 · · ·
XtractHlast,1 Hashlast−1 XtractMlast−1 Verify XtractHsign,1

HashlastXtractMlastStream as well other traces represent-
ing other orders of performing these internal computa-
tions. Finally, the output behaviour B

Σout

TR
of TR consists of

all prefixes of m′
0m

′
1 · · ·m

′
last.

Now the max-ai TA over {TS , T
(i)
R | 1 ≤ i ≤ n}, de-

noted by TEMSS , is defined as

TEMSS = ||| {TS , T
(i)
R | 1 ≤ i ≤ n},

which formalizes the EMSS protocol. Note that TEMSS has
no input actions, while it has the union of the output (in-
ternal) actions of TS and the TR’s as its output (internal)
actions. The fact that its output behaviour consists of all
prefixes of P0P1 · · ·PlastPsignm

′
0m

′
1 · · ·m

′
last implies that it

models broadcast communication. By composing other TA,
we can model multicast communication and packet loss.
In [5] we presented a case study dealing with such issues.

5

4. The Insecure Communication Scenario

In this section we describe how to adapt a generic pro-
tocol specification in order to obtain an insecure scenario
in which to analyze security properties. When describing
our insecure scenario we assume all actions of TA to be
built over a first order signature σ, where predicate sym-
bols are seen as communication channels and atomic for-
mulae as messages. We assume that the function symbols in
σ contain at least the ones that we have implicitly used in
the previous section, i.e.: the symbols denoting the encryp-
tion and pairing functions, e.g., { } and 〈 , 〉; the symbols
denoting the hash functions, e.g., h(); those indicating the
secret and public key, e.g., sk() and pk(). We let m, m′

range over the set Messages of atomic formulae, and c, c′

over the set Channels of predicate symbols. In the sequel,
Eve, Eve′, Pub, Pub′, and Reveal will be used as partic-
ular predicate names. Hence every action will be written
as c(m), i.e., denoting the message m sent over the chan-
nel c. Given a set M ⊆ Messages of messages, we define
c(M) = {c(m) | m ∈ M}. Given a set C of predicate
names we define C(M) = {c(m) | m ∈ M, c ∈ C}. Fi-
nally, with a little abuse of notation, in the sequel we will
write C also as a shortcut for the set C(Messages).

We abstract from the cryptographic details concerning
the operations according to which these messages can be
encrypted, decrypted, hashed, etc., but we assume the pres-
ence of a cryptosystem (defined by a derivation operator
`) that implements these operations. By applying crypto-
graphic operations from this cryptosystem to a set M of
messages, a new set D(M) = {m | M ` m} of messages
(usually called the deduction set) can be obtained. This is
a standard approach in the formal analysis of cryptographic
protocols of communication [6, 9, 17, 18].

In the sequel we assume a protocol specification involv-
ing only two roles, viz. an initiator TS and a responder TR.
Contrary to a direct communication between TS and TR as
considered so far, we assume all the communication to flow
through an insecure channel (cf. Fig. 1). This insecure chan-
nel may release some messages to an intruder which, in its
turn, can either listen to or modify (fake) the messages pass-
ing through this channel. When verifying security proper-
ties for communication protocols, it is indeed quite com-
mon to include an additional intruder component that is sup-
posed to be malicious and whose aim is to subvert the pro-
tocol’s correct behaviour. A protocol specification is con-
sequently considered secure w.r.t. a security property if it
satisfies this property despite the presence of the intruder.
Based on the approach of [18], the insecure channel and the
intruder are modelled by TA TIC and TX . We thus propose
a framework of four types of TA:

1. TS plays the role of the protocol’s initiator,

2. TR plays the role of the protocol’s responder,

3. TIC plays the role of the insecure channel, and

4. TX plays the role of the intruder.

We do not explicitly model the TA of our framework, but we
informally describe them by their interactions. More pre-
cisely, we let the initiator and the responder communicate
with the insecure channel through disjoint sets of actions
ΣS

com and ΣR
com, resp., such that a direct communication

between them is impossible. The TIC , in its turn, can inter-
act with the intruder only through a distinct set ΣI

com of ac-
tions. Finally, some particular actions may be used by an
honest role in order to reveal some information to the out-
side concerning, e.g., a state reached during a run of the pro-
tocol. In Fig. 1 an example of such a scenario is given for
protocols with a unique sender and a unique receiver. This
scenario thus suits a variety of stream signature protocols.

send
Public Public

receive

Eavesdrop Inject

Assertions

TIC

TS

TI

TX

TP

Pub(m)

Eve
′(m)Eve(m)

Pub
′(m)

TR
Reveal(m)

Figure 1. An example insecure scenario.

We let TP denote the TA representing our protocol spec-
ification in the absence of the intruder. We thus define TP

to be the max-ai TA over {TS , TR, TIC } that is obtained
after hiding the actions ΣP

com = ΣS
com ∪ ΣR

com, i.e., all
messages sent through the insecure channel (e.g., ΣP

com =
{Pub, Pub′} in Fig. 1). Hence

TP = hideΣP
com

(||| {TS , TR, TIC}).

Recall that, using the previously defined notations, the
shortcut {Pub, Pub′} stands for {Pub(m), Pub′(m) | ∀m ∈
Messages}. We may use such shortcuts from now on when
no confusion arises. By internalizing the actions ΣP

com,
these actions are no longer available for synchroniza-
tions in further TA composed over TP . To its environment,
TP thus appears as a black box, possibly with some out-
put actions ΣR

sig—signalling the successful reception of

6

messages. Usually such signals are used only for verifica-
tion purposes (e.g., ΣR

sig = {Reveal} in Fig. 1).
We let TI denote the TA representing our protocol spec-

ification in the presence of the intruder. Actions ΣI
com serve

as the backdoor for intrusion and are added to TIC (e.g.,
ΣI

com = {Eve, Eve′} in Fig. 1). This is exactly what we
need to guarantee that the intruder TX may communicate
with TP only through the insecure channel. We thus define
TI to be the max-ai TA over {TP , TX } that is obtained after
hiding the actions ΣI

com, i.e., all messages that the intruder
can eavesdrop from and inject back into the insecure chan-
nel. We thus enforce maximal synchronization between the
intruder and the protocol. Hence

TI = hideΣI
com

(||| {TP , TX })

We have now defined an insecure communication scenario
by composing a secure communication scenario with an in-
truder. Note that it would not be difficult to formally spec-
ify an insecure version of our TA model of the EMSS pro-
tocol. The extension considering an arbitrary number of re-
ceivers is also straightforward.

5. Security Analysis Through GNDC for TA

We now reformulate the GNDC schema in terms of TA.
We assume some familiarity with process algebras.

Informally, the GNDC schema states that a system speci-
fication P satisfies property GNDC α(P)

/ if the behaviour of
P , despite the presence of a hostile environment EC that can
interact with P only through a fixed set of channels C, ap-
pears to be the same (w.r.t. a behavioural relation / of ob-
servational equivalence) as the behaviour of a modified ver-
sion α(P) of P that represents the expected (correct) be-
haviour of P . The GNDC schema thus has the form

P ∈GNDC α(P)
/ iff ∀X∈EC : (P ‖X)\C / α(P),

where (P ‖ X)\C denotes the parallel composition of pro-
cesses P and X restricted to communication over channels
other than C. X is required to be any process in the environ-
ment EC , i.e., the set of all processes whose communicating
actions are in C. By varying the parameters / and α, differ-
ent security properties can be formulated [7, 10, 20].

In the specific context of analyzing cryptographic pro-
tocols, the static (initial) knowledge of the hostile environ-
ment must be bound to a specific set of messages. This lim-
itation is needed to avoid a too strong hostile intruder that
would be able to corrupt any secret (as it would know all
cryptographic keys, etc.). This brings us to the definition of
a new environment Eφ

C , based on EC , of all processes com-
municating through actions C and having an initial knowl-
edge of at most the messages in D(φ). For the analysis of
safety properties (e.g., secrecy, integrity, and authentication)
it is sufficient to consider the trace inclusion relation ≤ as

behavioural relation between the terms of the algebra [9].
Hence, let us consider the GNDC instance

P ∈GNDC
α(P)
≤ iff ∀X∈Eφ

C : (P ‖X)\C ≤ α(P), (1)

which was used to analyze integrity in stream signature
protocols [10]. Informally, (1) requires traces of process
(P ‖ X)\C (i.e., the parallel composition of processes P
and X restricted to communication over channels other than
C) to be included in the traces of process α(P), representing
the expected behaviour of P when no adversary is present.

5.1. Reformulating GNDC in Terms of TA

We begin by instantiating P to be a TA modelling a com-
munication between a sender and a set of receivers through
the use of an insecure channel, in the style of the TA TP con-
sidered in the insecure scenario in Sect. 4. To this aim, we
let TP be specified as TP = {Q, (ΣP

inp, Σ
P
out, Σ

P
int), δ, I}.

Because (1) requires P to communicate with X through the
channels contained in C, we require a set C of actions for
which C ∩ ΣP

ext 6= ∅ and C ∩ ΣP
com = ∅. This resem-

bles requiring TP to be able to communicate with the hostile
environment TX only by executing actions in ΣI

com (e.g.,
{Eve, Eve′} in Fig. 1). In the sequel we thus assume C to
coincide exactly with ΣI

com. We are now able to formalize
the hostile environment EC in terms of TA as

EC = {(Q, (Σinp, Σout, Σint), δ, I) | Σext ⊆ C}.

In addition, (1) requires the initial knowledge of the envi-
ronment to be bound to a specified set of messages φ. This
informally means that the environment should be able to
produce, by means of only its internal functioning, at most
the messages contained in D(φ). In terms of TA this means
that a CA in the environment, when considered as a stand-
alone component, can only execute output actions belong-
ing to c(D(φ)), where c ∈ C. This is formally defined by
restricting its behaviour to those traces consisting of solely
output actions since—at a more abstract level—these are
the traces that it can produce without receiving any addi-
tional messages from outside, i.e., by exploiting only its
own knowledge. Let IdΓ(BT) = {γ ∈ BT | γ ∈ Γ∗},
where Γ is a set of actions. Consequently, the initial knowl-

edge of T is defined as IdΣT
out (BT). The formal definition

of the environment Eφ
C in terms of TA thus becomes

Eφ
C = {X ∈ EC | IdΣX

out (BX) ⊆ (C(D(φ)))∗}.

Finally, recall that we are only interested in output actions
that a TA can produce by exploiting only its own knowl-
edge. Therefore, we hide those output actions involved
in communications and define the observational behaviour
(w.r.t. actions not in C) of the resulting TA as those traces
consisting of solely external actions not contained in C. As
a result we are able to reformulate (1) in terms of TA.

7

Definition 9 Let T = (Q, (Σinp, Σout, Σint), δ, I) be a TA
over S, let Σcom ⊆ Σext, and let T ′ = hideΣcom(T). Then
the observational behaviour of T ′ w.r.t. actions not in C, de-
noted by O

C
T ′ , is defined as

O
C
T ′ = IdΣT ′

ext−C(presΣT ′

ext
(BT ′)).

Definition 10 Let α(TP) be the expected (correct) be-
haviour of TP . Then

TP ∈ GNDC
α(TP)
⊆ iff

∀X ∈ Eφ
C : O

C

hideC(||| {TP ,X})
⊆ α(TP).

Informally, Def. 10 says that TP (i.e., a communication
protocol in our insecure scenario) satisfies GNDC

α(TP)
⊆ if

and only if its observational behaviour, despite communi-
cating with any intruder X through the actions C, is in-
cluded in α(TP) (i.e., the expected correct behaviour of the
communication protocol specified by TP). A significative
instance of α is, e.g., αint(TP) = O

C
TP

, which will be used
in Sect. 6 to express integrity. Additionally, Def. 10 requires
the intruder to be any TA able to interact with TP through
the actions C and with an initial knowledge bound to D(φ).

5.2. Analysis Strategies for TA

While allowing a uniform approach to defining security
properties, Def. 10 does not provide us with effective strate-
gies for security analysis of cryptographic communication
protocols. The universal quantification over Eφ

C causes seri-

ous problems when deciding whether TP ∈ GNDC
α(TP)
⊆ .

However, the theory developed for GNDC in terms of pro-
cess algebras inspires similar methodologies within TA.

The Most General Intruder. As a first analysis strategy we
look for a static characterization of the intruder, which does
not involve the universal quantification of Def. 10.

Lemma 1 Let T be a TA and let X ,X ′ ∈ EC . Then

B
C
X ⊆B

C
X ′ impliesO

C

hideC(|||{TP ,X})
⊆O

C

hideC(|||{TP ,X ′})
.

Proof. Let a1 · · · an ∈ O
C

hideC (||| {T ,X})
and let B

C
X ⊆

B
C
X . Since X ∈ EC , ΣX

ext ⊆ C. Then by Def. 9, for all
i ∈ [n], ai ∈ ΣT

ext − C. We now use that by definition also
all prefixes of a1 · · ·an are included in O

C

hideC (||| {T ,X})

and show by induction that all prefixes of a1 · · · an are
also included in O

C

hideC(||| {T ,X ′})
. First consider a1. By

Def. 9, either a1 ∈ BhideC(||| {T ,X}) or b1 · · · bma1 ∈
BhideC (||| {T ,X}), for some m ≥ 1 and where, for all
j ∈ [m], bj is an internal action of hideC(||| {T ,X}). In
both cases, since B

C
X ⊆ B

C
X ′ and ai ∈ ΣT

ext − C, for all
i ∈ [n], it follows by Def. 9 that a1 ∈ O

C

hideC(||| {T ,X ′})
.

Now assume a1 · · ·ak∈O
C

hideC(||| {T ,X ′})
, with k<n, and

consider a1 · · · ak+1. By arguments as above and the induc-
tion hypothesis, a1 · · · ak+1∈O

C

hideC(||| {T ,X ′})
. �

As Eφ
C ⊆ EC , this lemma holds for X ,X ′ ∈ Eφ

C as well.
Based on the approach of [9] we now define a CA Top

φ
C ,

representing the most general intruder, in an attempt to cir-
cumvent the universal quantification of Def. 10. Note that
the set C of predicates the intruder uses to interact with the
insecure channel can be partitioned into Cinp and Cout, i.e.,
the channel names the intruder uses to retrieve messages
from and to inject messages back into the insecure channel,
resp. (e.g., in Fig. 1, Cinp = {Eve} and Cout = {Eve′}).

Top
φ

C

Actions States
Inp: Cinp(Messages) received⊆2Cinp(Messages),
Out: Cout(Messages) initially φ
Int: ∅

Transitions
c(m) ∈ Cinp(Messages) c(m) ∈ Cout(Messages)

Eff: received := received ∪ {m} Pre: m ∈ D(received)

The general way in which this intruder is defined directly
implies that its behaviour includes that of any TA from Eφ

C .

Lemma 2 For all X ∈ Eφ
C , BC

X ⊆ B
C

Topφ

C

.

Lemmata 1 and 2 directly imply the following result.

Theorem 2 For all X ∈ Eφ
C ,

O
C

hideC(||| {TP ,X})
⊆ O

C

hideC(||| {TP ,Topφ
C
})

.

Together with Def. 10, this gives us the following result.

Corollary 1 Let α(TP) be as in Def. 10. Then

TP ∈ GNDC
α(TP)
⊆ iff O

C

hideC(||| {TP ,Topφ

C
})

⊆ α(TP).

Compositional Results. We now describe some results for
the insecure scenario of Sect. 4. To begin with, we let

T1 = hideΣP
com

(||| {TS , TIC }) and
T2 = hideΣP

com
(||| {TR, TIC }).

We then let TP be the TA defined at the end of Sect. 4, i.e.,
with ΣI

com = C added to TIC . Now TP thus represents
the scenario in which an initiator and a responder are con-
nected by an insecure channel, but not yet connected to an
intruder. If we add the the most general intruder, some gen-
eral results can be proved. To this aim we let

T ′
1 = hideC(||| {T1 , Topφ

C}) and

T ′
2 = hideC(||| {T2 , Topφ

C}).

8

Lemma 3 Let {m | {c(m) ∈ ΣS
com} ⊆ φ. Then

O
C

hideC(||| { ||| {T1 ,T2},Topφ

C
})

= ||
{Σ

T ′
1 ,Σ

T ′
2 }

{OC
T ′

1
,OC

T ′
2
}.

Proof. From the way T1 is composed it follows that ΣT1

ext =
ΣI

com. Consequently, the way that T ′
1 is composed implies

that Σ
T ′

1

ext = ∅. Hence, by Def. 9, O
C
T ′

1
= ∅, which

trivially implies that ||
{Σ

T ′
1 ,Σ

T ′
2 }

{OC
T ′

1
,OC

T ′
2
} = O

C
T ′

2
. It

now remains to prove that O
C
T ′

2
= O

C
T ′′ , where T ′′ =

hideC(||| { ||| {T1 , T2}, Topφ
C}). This however follows di-

rectly from the fact that {m | {c(m) ∈ ΣS
com} ⊆ φ. �

Before continuing, we observe the following property of
full synchronized shuffles. Let ∆i, with i ∈ [4], be alpha-
bets and let Li ⊆ ∆∗

i . Then L1 ⊆ L2 and L3 ⊆ L4 implies
that ||

{∆1,∆3}
{L1, L3} ⊆ ||

{∆2,∆4}
{L2, L4}.

Theorem 3 If T1 ∈ GNDC
O

C
T1

⊆ and T2 ∈ GNDC
O

C
T2

⊆ ,

then ||| {T1 , T2} ∈ GNDC
||

{ΣT1 ,ΣT2 }
{OC

T1
,OC

T2
}

⊆

Proof. We know from the hypothesis that O
C
T ′

1
⊆ O

C
T1

and O
C
T ′

2
⊆ O

C
T2

. Hence, by Lemma 3 and the above

observation, it follows that O
C

hideC(||| { ||| {T1 ,T2},Topφ

C
})

=

||
{Σ

T ′
1 ,Σ

T ′
2 }

{OC
T ′

1
,OC

T ′
2
} ⊆ ||

{ΣT1 ,ΣT2 }
{OC

T1
,OC

T2
}. �

6. Analysis of the EMSS Protocol

In this section we use the GNDC analysis framework for
TA to show that integrity is guaranteed in an instance of
the EMSS protocol. This has already been validated in [20],
where a CCS-like process algebra was used. Here we deal
with just one sender and one receiver and show the effec-
tiveness of TA for security analysis.

We let TS and TR (incl. their occurrences in TP , etc.) be
as specified in Subsection 3.1. Following the notation intro-
duced at the beginning of Sect. 4, their actions shall hence-
forth be written as composed terms, e.g., Pub(P1)’s outer-
most part Pub is a predicate symbol while its innermost part
P1 = 〈m′

1, h(P0), ∅〉 is an atomic formula.
We formally define integrity as the ability of TR to ac-

cept a message mi, for any i, only as the ith message sent
by TS . We moreover assume that TR signals the acceptance
of a stream of messages as a legitimate one by issuing it
as a list of messages through special actions {Reveal}.
We require the expected (correct) observational behaviour
αint(TP) of TP w.r.t. integrity as O

C
TP

, i.e., as all prefixes of
Reveal(m0)Reveal(m1) · · ·Reveal(mlast).

Furthermore, we equip Topφ
C with an initial knowledge

φ consisting of all output actions of TS as well as the pub-
lic key pk(TS), i.e., φ = {P0, P1, Pi, Psign | 2 ≤ i ≤ last}∪
{pk(TS)}, where P0 = 〈m0, ∅, ∅〉, P1 = 〈m1, h(P0), ∅〉,
Pi = 〈mi, h(Pi−1), h(Pi−2)〉, for all 1 ≤ i ≤ last, and

Psign = 〈{h(Plast), h(Plast−1)}sk(TS)〉. We do so solely for

analysis reasons, viz. in order to enable Topφ
C to send the

correct messages to TR through the insecure channel when
analyzing the max-ai TA over T2 and Topφ

C (cf. the proof
of Prop. 2). Note that the messages contained in its initial
knowledge are exactly those that it is anyway able to re-
ceive in the max-ai TA over TP and Topφ

C by eavesdrop-
ping when TS sends them through the insecure channel. As
is common in security analysis, we rely on the perfect en-
cryption assumption, i.e., Topφ

C cannot deduce sk(TS) from
φ nor can it forge hash and encryption functions by guess-
ing. Hence the observational behaviour of the max-ai TA
over T1 and Topφ

C is empty, i.e.,

Proposition 1 T1 ∈ GNDC ∅

⊆.

Proof. Directly by Cor. 1, as O
C

hideC(||| {T1 ,Topφ

C
})

=∅. �

The way in which the receiver verifies the messages it re-
ceives implies that the observational behaviour of the max-
ai TA over T2 and Topφ

C is included in the expected obser-
vational behaviour αint(TP) of TP w.r.t. integrity, i.e.,

Proposition 2 T2 ∈ GNDC
αint(TP)
⊆ .

Proof. The proof distinguishes two cases. If TR does not
output any action Reveal(mi), for all payloads mi, then its
empty output behaviour is trivially included in αint(TP).

Next assume that TR outputs actions Reveal(mi), for
all payloads mi. To do so, the definition of the EMSS pro-
tocol guarantees that TR must have verified that Psign was
signed with sk(TS). Because Topφ

C cannot deduce this pri-
vate key from its initial knowledge and none of the TA ever
outputs this private key, it follows that Topφ

C does not know
sk(TS). Since digital signatures and hash functions cannot
be forget by the intruder, the only possibility for TR to out-
put the Reveal(mi), for all payloads mi, is that Topφ

C has
sent TR all the correct packages in the correct order. This
shows why, in absence of TS , we had to equip Topφ

C with
an initial knowledge consisting of all output actions of TS .
Hence TR must output all payloads mi in the correct order
and thus O

C

hideC(||| {T2 ,Topφ
C
})

⊆ αint(TP) because the be-

haviour of any TA is prefix closed. �

Finally, we can show that integrity is guaranteed in the
instance of the EMSS protocol under scrutiny.

Proposition 3 TP ∈ GNDC
αint(TP)
⊆ .

Proof. By Prop. 1 and 2 and Thm. 3, ||| {T1 , T2} ∈

GNDC
||

{ΣT1,ΣT2 }
{OC

T1
,OC

T2
}

⊆ = GNDC
||

{Reveal}
{∅,αint(TP)}

⊆

= GNDC
αint(TP)
⊆ . Then O

C

hideC(||| { ||| {T1 ,T2},Topφ

C
})

⊆

αint(TP) by Cor. 1. From Remarks 1 and 2 then fol-
lows that B ||| { ||| {T1 ,T2},Topφ

C
} = B ||| {TS ,TR,TIC ,Topφ

C
} =

B ||| {TP ,Topφ

C
} and thus O

C

hideC (||| { ||| {T1 ,T2},Topφ

C
})

=

9

O
C

hideC (||| {TP ,Topφ

C
})

by Def. 9. Hence O
C

hideC (||| {TP ,Topφ

C
})

⊆ αint(TP) and thus, by Cor. 1, TP ∈ GNDC
αint(TP)
⊆ . �

7. Conclusions and Future Work

We have embedded TA in a well-established framework
for security analysis by reformulating the GNDC schema
for TA. We have also achieved effective analysis strategies
for a given insecure scenario with just two roles, viz. an ini-
tiator and a responder. First, by defining the most general in-
truder we have been able to avoid the universal quantifica-
tion in an initial reformulation of the GNDC schema. Sec-
ondly, a compositional analysis strategy shows how secu-
rity properties are preserved for a composition over these
two roles. We conjecture that, on the basis of Thm. 1, these
results can be extended to a multi-roled insecure scenario
in which principals can act as initiators as well as respon-
ders. A detailed investigation into this direction is left as fu-
ture work. We have then used the GNDC framework for TA
to prove that integrity is guaranteed in a case study.

8. Acknowledgements

Ter Beek and Lenzini were supported by MIUR “Spe-
cial Fund for the Development of Strategic Research” un-
der CNR project “Instruments, Environments and Inno-
vative Applications for the Information Society”, subpro-
ject “Software Architecture for High Quality Services for
Global Computing on Cooperative Wide Area Networks”.

Lenzini was moreover partially supported by “PAW:
Privacy in an Ambient World”, a TUD/DIES/KUN/TNO-
EIB/TNO-FEL collaboration funded by IOP GenCom un-
der project nr. IGC03001.

Petrocchi was supported by MIUR Project: “Stru-
menti, Ambienti e Applicazioni Innovative per la Società
dell’Informazione”, sottoprogetto SP1: Reti INTER-
NET: “efficienza, integrazione e sicurezza”.

References

[1] E. Badouel, Ph. Darondeau, D. Quichaud, and A. Tokmakoff.
Modelling Dynamic Agent Systems with Cooperating Au-
tomata. Technical report, Publication Interne 1253, Insti-
tut de Recherche en Informatique et Systèmes Aléatoires,
Rennes, 1999.

[2] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Team
Automata for Spatial Access Control. In Proc. ECSCW’01,
pages 59–77. Kluwer Academic, 2001.

[3] M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg.
Synchronizations in Team Automata for Groupware Sys-
tems. Computer Supported Cooperative Work—The Jour-
nal of Collaborative Computing, 12(1):21–69, 2003.

[4] M.H. ter Beek and J. Kleijn. Team Automata Satisfying
Compositionality. In Proc. FME’03, LNCS 2805, pages
381–400, 2003.

[5] M.H. ter Beek, G. Lenzini, and M. Petrocchi. Team Au-
tomata for Security Analysis of Multicast/Broadcast Com-
munication. In Proc. WISP’03—affiliated to ATPN’03, pages
57–71. Techn. Report Eindhoven Univ. of Technology, 2003.

[6] E.M. Clarke, S. Jha, and W. Marrero. Verifying Security Pro-
tocols with Brutus. ACM Transactions on Software Engi-
neering and Methodology, 9(4):443–487, 2000.

[7] R. Focardi and R. Gorrieri. A Classification of Security Prop-
erties. Journal of Computer Security, 3(1), 1995.

[8] R. Focardi, R. Gorrieri, and F. Martinelli. Non-Interference
for the Analysis of Cryptographic Protocols. In Proc.
ICALP’00, LNCS 1853, pages 354–372. Springer, 2000.

[9] R. Focardi and F. Martinelli. A Uniform Approach for
the Definition of Security Properties. In Proc. FM’99,
LNCS 1708, pages 794–813. Springer, 1999.

[10] R. Gorrieri, F. Martinelli, M. Petrocchi, and A. Vaccarelli.
Compositional Verification of Integrity for Digital Stream
Signature Protocols. In Proc. ACSD’03. IEEE, 2003.

[11] S. Gürgens, P. Ochsenschläger, and C. Rudolph. Role
Based Specification and Security Analysis of Cryptographic
Protocols Using Asynchronous Product Automata. In
Proc. DEXA’02, pages 473–482. IEEE, 2002.

[12] R. Janicki and P.E. Laurer. Specification and Analysis of
Concurrent Systems, The COSY Approach. Springer, 1992.

[13] N.W. Keesmaat. Vector Controlled Concurrent Systems. PhD
thesis, Dept. of Computer Science, Leiden Univ., 1996.

[14] N.W. Keesmaat, H.C.M. Kleijn, and G. Rozenberg. Vector
Controlled Concurrent Systems, Part I: Basic Classes. Fun-
damenta Informaticae, 13:275–316, 1990.

[15] J. Kleijn. Team Automata for CSCW – A Survey –. In
Petri Net Technology for Communication-Based Systems—
Advances in Petri Nets, LNCS 2472, pages 295–320, 2003.

[16] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak
Bisimulation for Probabilistic Timed Automata and Appli-
cations to Security. In Proc. SEFM’03, pages 34–43. IEEE,
2003.

[17] G. Lenzini, S. Gnesi, and D. Latella. Spider: a Security
Model Checker. In Proc. FAST’03—affiliated to FME’03,
pages 163–180. Techn. Report ITT-CNR-10/2003, 2003.

[18] N.A. Lynch. I/O Automaton Models and Proofs for Shared-
Key Communication Systems. In Proc. CSFW-12, pages 14–
31, 1999.

[19] N.A. Lynch and M.R. Tuttle. An Introduction to Input/Out-
put Automata. CWI Quarterly, 2(3):219–246, 1989.

[20] F. Martinelli, M. Petrocchi, and A. Vaccarelli. Composi-
tional Verification of Secure Streamed Data: a Case Study
with EMSS. In Proc. ICTCS’03, LNCS 2841, pages 383–
396, 2003.

[21] D. von Oheimb and V. Lotz. Formal Security Analysis
with Interacting State Machines. In Proc. ESORICS’02,
LNCS 2502, pages 212–228. Springer, 2002.

[22] A. Perrig, R. Canetti, J.D. Tygar, and D.X. Song. Efficient
Authentication and Signing of Multicast Streams over Lossy
Channels. In Proc. S&P’00, pages 56–73. IEEE, 2000.

10

