

Application of Linguistic Techniques for Use Case

Analysis

A.FANTECHI*, S.GNESÎ , G.LAMI^, A. MACCARI+

*Dip. di Sistemi e Informatica - Università di Firenze - Italy

fantechi@dsi.unifi.it

^Istituto di Elaborazione della Informazione - C.N.R. - Area della Ricerca C.N.R. - Italy

{gnesi, glami}@iei.pi.cnr.it}

+ Nokia Research Center, Software Architecture Group – Finland

alessandro.maccari@nokia.com

Use Cases are an effective technique to express Functional Requirements of a system in a very simple and easy-to-learn

way. Use Cases are mainly composed of Natural Language (NL) sentences and the use of NL to describe the behavior

of a system is always a critical point, due to the inherent ambiguities originating from the different possible

interpretations of NL sentences. We discuss in this paper the application of analysis techniques based on a linguistic

approach to detect, within requirements documents, defects related to such inherent ambiguity. Starting from the

proposed analysis techniques we will define some metrics that will be used to perform a quality evaluation of

requirements documents. Some available automatic tools supporting the linguistic analysis of NL requirements have

been used to evaluate an industrial Use Cases document according to the defined metrics. A discussion on the

application of linguistic analysis techniques to support semantic analysis of Use Cases is also reported.

1. Introduction

Use Cases are a powerful tool to capture functional requirements for software systems. They allow

structuring requirements according to user goals [7] and provide a means to specify the interaction

between a certain software system and its environment.

Graphical object modeling languages have become very popular in recent years. Among those,

UML [18] introduces a set of graphical notation elements for Use Case modeling. UML Use Case

diagrams are easy to understand and constitute a good vehicle of communication. However, they

mainly serve as a sort of table of content for Use Cases, presenting the connections between actors

and Use Cases, and the dependencies between Use Cases.

System behavior cannot be specified in detail with Use Case diagrams. In his book [6], Alistair

Cockburn presents an effective technique for specifying the interaction between a software system

and its environment. The technique is based on natural language specification for scenarios and

extensions. Scenarios and extensions are specified by phrases in plain English language. This

makes requirements documents easy to understand and communicate even to non-technical people.

Natural language is powerful (the expression power of the English language is said to be higher

than any other language in the world), well known and generally easy to understand. However, it is

also prone to ambiguities, redundancies, omissions and other defects that can lead to problems

when precision and clarity are essential (it is the case of software requirements specification

particularly for embedded, mission-critical and performance-sensitive systems). Formal

requirements specification languages (such as Z [23], B [1], LOTOS [5], etc.) were invented

specifically to tackle this problem. They add formality and remove ambiguity, but are hard to

understand by non-experts, which limits their practical application to some restricted domains.

Nokia has started using the natural- language-based Use Case modeling technique to specify

functional requirements for the mobile phone software user interface. As part of the project CAFÉ

[10], we have initiated a joint research project on the use of methods based on a linguistic approach

with the aim to collect metrics and perform a qualitative analysis of the requirements. We also

investigate the application of linguistic techniques to Use Cases to expand information to support

semantic analysis and consistency checks. This paper is structured as follows: in section 2 we

describe what Use Cases are and which kind of Use Cases we will consider; in section 3 we give an

overview of some related works, placing our contribution therein; in section 4 we discuss the NL-

based approach to analyse Use Cases, in section 5 we present three available tools for quality

evaluation of NL components of Use Cases, along with the metrics that can be calculated by using

them; in Section 6 we show the results of the application of the tools to an industrial case study.

Finally, in section 7 we discuss some first steps in a research activity aimed at the semantic analysis

of Use Cases , based on linguistic approaches.

2. Use Cases

A Use Case [6] describes the interaction (triggered by an external actor in order to achieve a goal)

between a system and its environment. Every Use Case constitutes a goal-oriented set of

interactions between external actors and the system under consideration. The term actor is used to

describe any person or system that has a goal against the system under discussion or interacts with

the system to achieve some other actor’s goal. A primary actor triggers the system behaviour in

order to achieve a certain goal. A secondary actor interacts with the system but does not trigger the

Use Case.

A Use Case is completed successfully when the goal that is associated to it is reached. Use Case

descriptions also include possible extensions to this sequence, e.g., alternative sequences that may

also satisfy the goal, as well as sequences that may lead to failure in completing the service in case

of exceptional behaviour, error handling, etc. The system is treated as a "black box”: Use Cases

capture who (actor) does what (interaction) with the system, for what purpose (goal), without

dealing with system internals. A complete set of Use Cases specifies all the different ways actors

can use the system, and therefore defines the whole required behaviour of the system. Generally,

Use Case steps are written in an easy-to-understand, structured narrative using the vocabulary of

the domain. The language used for the description is usually English. Any other natural language

can be used as well, and although our analysis focuses on English, the same reasoning can be

applied to other languages (considering the obvious differences in syntax and grammar rules). A

scenario is an execution path of a Use Case, and represents a single path through the Use Case that

leads to success in achieving the goal (the Main Success Scenario). Thus, there exists a scenario for

the main flow through the Use Case, and other scenarios for each possible variation of flow

through the Use Case (e.g., triggered by options, error conditions, security breaches, etc.).

Scenarios may also be depicted in a graphical form using UML sequence diagrams. Figure 1 shows

the template of a typical Use Case taken from [7].

USE CASE # < The name is the goal as a short active verb phrase>

Goal in Context <A longer statement of the goal in context if needed>

Scope & Level <What system is being considered black box under design>

<One of: Summary, Primary Task, Sub-function>

Preconditions <What we expect is already the state of the world>

Success End

Condition

<The state of the world upon successful completion>

Failed End Condition <The state of the world if goal abandoned>

Primary,

Secondary Actors

<A role name or description for the primary actor>.

<Other systems relied upon to accomplish the use case>

Trigger <The action upon the system that starts the use case>

Description Step Action

 1 <Put here the steps of the scenario from trigger to

goal delivery, and any cleanup after>

 2 <...>

 3

Extensions Step Branching Action

 1a <Condition causing branching>:

<Action or name of sub-use case>

Sub-Variations Branching Action

 1 <List of variations>

Figure 1. Use Case template

In this textual notation, the main flow is expressed, in the “Description” section, by an indexed

sequence of NL sentences, describing a sequence of actions of the system. Variations are

expressed (in the "Extensions" section) as alternatives to the main flow, linked by their index to

the point of the main flow in which they branch as a variation.

Developers have always used scenarios in order to understand what the requirements of a system

are and how a system should behave with respect to its environment. For instance, in the

telecommunications domain, the use of UML sequence diagrams (formerly known as message

sequence charts) is very popular. Unfortunately, this understanding process has rarely been

documented in an effective manner. The research we perform is an attempt to improve the

understanding process by identifying possible flaws in the textual scenario descriptions.

3. Related works on Natural Language Processing (NLP)

applied to requirements

Several studies dealing with the evaluation and the achievement of quality in natural language

requirement documents can be found in the literature. We will briefly discuss some that we

consider to be of particular interest to our research.

Macias and Pulman [20] apply domain-independent Natural Language Processing (NLP)

techniques to control the production of natural language requirements.

They propose the application of NLP techniques to requirements documents in order to control:

- the vocabulary used, which must be fixed and agreed upon, and

- the style of writing, i.e., a set of pre-determined rules that should be satisfied in order to

make documents clear and simple to understand; they associate an ambiguity rate to sentences,

depending on the degree of syntactic and semantic uncertainty of the sentence. The information is

conveyed by discovering under-specifications, missing information, unconnected statements.

Finally, they discuss how NLP techniques can help the design of subsets of the English-grammar to

limit the generation of ambiguous statements

Goldin and Berry [15] implemented a tool for the extraction of abstractions from natural language

texts, i.e. of repeated segments identifying significant concepts on the application field of the

problem at hand. The technique proposed is restricted to a strict lexical analysis of the text.

Hooks [16] discusses a set of quality characteristics necessary to produce well-defined natural

language requirements. This paper discusses some common problems which arise when

requirements are produced, and looks at how to avoid them. It provides an in depth survey of the

principal sources of defects in natural language requirements and the related risks.

Wilson and others [25] examine the quality evaluation of natural language software requirements.

Their approach defines a quality model composed of quality attributes and quality indicators, and

develops an automatic tool (called ARM: Automated Requirement Measurement) to perform the

analysis against the quality model aiming to detect defects and collect metrics.

Other works investigate how to handle ambiguity in requirements. In particular, Fuchs [14]

proposes to solve the problems related to the use of NL in requirements documents by defining a

limited natural language, called Attempt Controlled English (ACE), able to be easily understood by

stakeholders and by any person involved into the software development process. This subset of

English is simple enough to avoid ambiguities, so that domain specialists are allowed to express

requirements using natural language expressions and to combine these with the rigor of formal

specification languages.

Kamsties and Paech [19] focus especially on the ambiguity evaluation of natural language

requirements. They start from the consideration that ambiguity in requirements is not just a

linguistic-specific problem and propose the idea of a checklist addressing not only linguistic

ambiguity but also the ambiguity related to a particular domain.

Mich and Garigliano [21] propose a set of metrics for syntactic and semantic ambiguity in

requirements. Their approach is based on the use of information on the possible meanings and roles

of the words within a sentence and on the possible interpretation of a sentence. This is done using

the functionalities of a tool called LOLITA.

Natt och Dag et al. [22] recently presented an approach based on statistical techniques for the

similarity analysis of NL requirements aimed at identifying duplicate requirement pairs. This

technique may be successfully used for revealing interdependencies and then may be used as a

support for the consistency analysis of NL requirements. In fact, the automatic determination of

clusters of requirements dealing with the same arguments may support the human analysis, aimed

at detecting inconsistencies and discrepancies, by focusing on smaller sets of requirements.

Ambriola and Gervasi [3] propose an approach to the problem of achieving high quality NL

requirements that defines a system called CIRCE that can build (semi-) formal models in an almost

automatic fashion, extracting information from the NL text of the requirements; the system can

then measure and check the consistency of these models. CIRCE can be profitably adopted as a

means to induce the use of a suitable style in writing the requirements.

Although works aiming at the improvement of the correctness of requirements relying on the Use

Cases structure already exist [2, 4, 9], to our knowledge, NL processing techniques have not yet

been applied to the analysis of Use Cases. Therefore, the work we present has some novelty in that

it examines a particular, yet crucially important and widely used, type of NL requirements

modelling.

In the next sections, we will show the added value that can be obtained by focusing NL processing

techniques on this particular approach for requirements definition.

4. Analysis of Use Cases by means of Natural Language-based

techniques

Natural Language (NL) plays a relevant role in the specification of requirements by Use Cases

because actors, actions, scenarios, responsibilities, goals etc. are specified in NL. Therefore, use of

NL as a way to specify the behavior of a system is however a critical issue, due to the inherent

ambiguity originating from different interpretations of natural language descriptions.

The use of techniques for the linguistic analysis of N texts can be envisaged therefore to remove

interpretation problems in requirements documents that are based on Use Case descriptions. The

analysis made by means of NL-based techniques can be useful to address several interpretation

problems related to linguistic aspects of Use Cases. These problems may be grouped into three

main categories:

- Expressiveness: it includes those problems dealing with the understanding of the meaning of

Use Cases by humans. In particular, we consider:

??Ambiguity mitigation: detection and correction of linguistic ambiguities in the Use

Case’s sentences;

??Understandability improvement: evaluation of the understandability level of a

requirements document and indication of those parts of it that need improvement.

- Consistency: it includes those characteristics dealing with the presence of semantics

contradictions and structural incongruities in the NL requirements document.

- Completeness: it includes those characteristics dealing with the lack of necessary parts

within the requirements document.

The NL components of Use Cases (typically sentences) may be analysed from a lexical, syntactical

or semantic point of view. For this reason it is proper to talk about, for example, lexical non-

ambiguity or semantic non-ambiguity rather than non-ambiguity in general. For instance, a NL

sentence may be syntactically non-ambiguous (in the sense that only one derivation tree exists

according to the syntactic rules applicable) but it may be lexically ambiguous because it contains

wordings that have not a unique meaning.

Figure 2 shows schematically that the quality of NL requirements, and in particular of Use Cases,

can be represented as a two-dimensional space, where the horizontal dimension is composed of the

main target qualities to be achieved (Expressiveness, Consistency and Completeness) and the

vertical dimension is composed of the different points of view from which the target qualities can

be considered.

 Lexical Syntactical Semantic

Expressiveness Ambiguity
mitigation

 Understandability
improvement

Consistency

Completeness

Figure 2. Two-dimensional representation of the NL requirements quality

NL-based techniques are not sufficient to cover completely all the above issues, in particular

consistency and completeness, since these also address questions about the semantics of the NL

sentences. However, NL based techniques may provide a significant help in analysing

expressiveness problems of Use Cases from a linguistic point of view. In particular, it is possible to

provide measures for the evaluation of the quality of Use Cases defining some linguistic-based

metrics derived from the application of a set of tools for the analysis of NL requirements

documents.

We concentrate in this paper on expressiveness-related issues, leaving consistency and

completeness problems to further studies, some preliminary results of which are anticipated in

Section 7.

The expressiveness-related issues for ambiguity mitigation may be addressed in the following

ways:

- by lexical evaluation: using lexical parsers to detect and possibly correct terms or wordings

that are ambiguous (i.e. that may have multiple meanings according to the context).

- by syntactical evaluation: using syntactical analysers to detect sentences having different

interpretations on the basis of different derivation trees.

Understandability improvement may instead be improved in the following ways:

- by lexical evaluation: using lexical parsers both to detect poorly understandable wordings

that decrease the readability of a document and to achieve readability indicators based on

the count of elements of the sentences (e.g. the number of characters or words of the

sentences, average length of the sentences etc.).

- by syntactical evaluation: using syntactical analysers to detect sentences having a too

complex syntactical structure and hence hard to be understood (e.g. sentences with

conjunctions, disjunctions, multiple subjects, objects, verbs).

5. Quality evaluation of Use Cases

Our objective is the application of methods and tools for the analysis of NL requirements

documents in order to easily detect linguistic inaccuracies in Use Cases dealing in particular with

problems related to the expressiveness of a document.

To this aim, we define a set of metrics that can be used to evaluate the quality of requirements

documents, based on Use Cases, according to the categories listed in the previous section. We have

addressed this problem starting from the definition of a set of metrics related to quality

characteristics that fall in the Expressiveness category. The metrics can be derived from the

application of three different automatic tools developed to perform linguistic analysis of NL

requirements documents i.e.: QuARS [13], ARM [25] , SyTwo [24]. This set of metrics is based on

quality properties and quality indicators used by the considered tools to evaluate NL requirements.

5.1 QuARS

The tool QuARS (Quality Analyzer for Requirements Specifications) [12] is based on the quality

model, shown in Table 1 . This quality model is composed of a set of high- level quality properties

for NL requirements to be evaluated by means of syntactic and structural indicators. The indicators

are collected into specific dictionaries that contain terms and linguistic constructions characterising

a particular defect and directly detectable looking at the sentences of a requirements document. The

quality model has been defined by considering existing related literature and by taking advantage

from matured experience in the field of requirement engineering and software process assessment

according to the SPICE (ISO/IEC 15504) model [17].

The QuARS quality model, though not exhaustive, is sufficiently specific to include a significant

part of lexical and syntax-related issues of requirements documents.

QuARS is a sentence analyser aiming at reducing linguistic defects by pointing out those wordings

that make the document ambiguous or not clear from a lexical point of view. The tool points out

such defects without forcing any corrective actions, leaving the user free to decide whether

modifying the document or not. Moreover the sentences are analysed taking into account the

particular application domain, and this is possible through the use of tailored dictionaries. In this

sense the tool has been designed to be easily adaptable.

Property Indicator Description

Vagueness

It is pointed out when parts of the sentence hold inherent vagueness, i.e.
words having a non uniquely quantifiable meaning (e.g. adequate, clear,
effective, ….)

Subjectivity It is pointed out if the sentence refers to personal opinions or feeling (e.g.
similar, as appropriate, having in mind, …)

Optionality It reveals a requirement sentence containing an optional part (e.g.
possibly, alternatively, if case, if needed,...)

Testability

Weakness It is pointed out in a sentence when it contains a weak main verb
 Under

specification
It is pointed out in a sentence when the subject of the sentence contains a
word identifying a class of objects, without a modifier specifying an
instance of this class (e.g. procedure, manual, interface, …)

Consistency Under-reference It is pointed out in a when a sentence contains explicit references to:
- not numbered sentences,
- documents not referenced in the document under analysis
- entities not defined nor described in the document under analysis

Understandability Multiplicity It is pointed out if the sentence has more than one main verb or more than
one direct or indirect complement that specifies its subject

 Implicity It is pointed out in a sentence when the subject is generic rather than
specific.

 Comment
Frequency

CFI (Comment Frequency Index) = NC / NR
where NC is the number of requirements having one or more comments,
NR is the total number of requirements.
A comment is intended to be a sentence, clearly identified by a keyword
(e.g. “comment:”, or “comment=”), which aims to improve the
understanding of the requirement that includes it.

 Unexplanation It is pointed out when a sentence contains acronyms not explicitly and
completely explained within the document under analysis

Table 1. The QuARS quality model

The following are examples of expressiveness defects pointed out by QuARS; the underlined

wordings are the indicators used by QuARS to point out the sentence as defective:

- The C code shall be clearly commented (vague sentence)
- The system shall be as far as possible composed of efficient software

components (subjective sentence)
- The system shall be such that the mission can be pursued, possibly

without performance degradation (optional sentence)

5.2 ARM

The objective of the Automated Requirement Measurement Tool (ARM) is to provide measures

that can be used to assess the quality of a requirements specification document [25]. ARM is not

intended to be used for the evaluation of the correctness of a specified requirements document.

This tool can be seen, similarly to QuARS, as an aid for “writing the requirements right,“ not

“writing the right requirements”.

In ARM, a quality model similar to that defined for QUARS is employed; this model was defined

by compiling first a list of quality attributes that requirements specifications are expected to

exhibit, then a list of those aspects of a requirement specification that can be objectively and

quantitatively measured. The two lists were analysed to identify relationships between what can be

measured and the desired quality attributes. This analysis resulted in the identification of categories

of sentences and individual items (i.e. words and phrases) that are primitive indicators of the

specification’s quality and that can be detected and counted by using the document text file. The set

of primitive indicators then has been refined by using a data base composed of words and phrases

resulting from the analysis of a set of requirements specifications documents acquired from a broad

cross section of NASA projects. These individual indicators have been grouped according to their

indicative characteristics.

Table 2 shows the single sentence categories and, for each of them, the set of related indicators.

The user can supply new domain-dependent quality indicators.

 CATEGORIES
 IMPERATIVE CONTINUANCE DIRECTIVE OPTION WEAK PHRASES INCOMPLETES

Shall below: e.g. Can adequate TBD

Must as follows: i.e. May as appropriate TBS

is required to following: For example Optionally be able to TBE

are applicable listed: Figure be capable of TBC

are to in particular: Table capability of/to not defined

responsible for support: Note: easy to not determined

Will and effective but not limited to

Should : as required as a minimum

 normal

 provide for

I

N

D

I

C

A

T

O

R

S

 timely

Table 2. Standard ARM Indicators

5.3 SyTwo

SyTwo is a tool developed as a Web application performing linguistic analysis of an English text

by means of lexical and syntactical analysis of a text. This tool can analyse the English text both to

check its conformance to the rules of the Simplified English, and to detect some defects having a

specific impact on the quality of requirements. To this aim, SyTwo, which has been developed as

an evolution of QuARS, partially adopts its quality model.

SyTwo builds, using a natural language grammar, the derivation trees of each sentence. During the

analysis process, each syntactic node is associated with a feature structure, which specifies

morpho-syntactic data of the node and application-specific data, such as errors with respect to the

quality model. The output is composed of an error code, corresponding to a predefined type of

defect, and of the indication of the part of the text the defects originate from.

Furthermore, SyTwo provides the value of the Coleman-Liau metrics for readability evaluation.

SyTwo can point out a syntactically ambiguous sentence, when the sentence has more than one

derivation tree: this implies that the sentence may be interpreted in different ways. For example the

sentence “The system shall not remove faults and restore service” may be syntactically interpreted

at least in these two different ways (see figure 3):

- The negation not of the auxiliary verb shall is related to the first verb only (remove), and not

to the other verb (restore). In this case, the meaning of the sentence is that the system shall

not remove the faults and it shall restore the service.

- The negation not of the auxiliary verb shall is related to both the verbs remove and restore.

In this case, the meaning of the sentence is that the system shall not remove the fault and

shall not restore the service

Figure 3: Two possible derivation trees

SyTwo is also able to capture the syntactical structure of a sentence identifying its components and

their syntactic role. From this information a component of SyTwo, called Cmap, is able to extract

the relations among subjects, verbs and objects in a sentence, building the so called “conceptual

maps”, which we will show in section 7 to be useful to perform further analysis of requirements

documents devoted to point out semantic problems.

5.4 Achievable Metrics

As any other evaluation process, the quality evaluation of NL software requirements has to be

conducted against a model. The model is directly derivable from the Quality Models of the tools

we are addressing here. Starting from these Quality Models, some metrics, especially related to the

Expressiveness category, can be gathered in order to perform a quantitative evaluation of a

requirements document. These metrics are described in Table 3. The acronyms used in the Type

column of Table 3 mean: UN = Understandability, RE = Readability, TR = Traceability, MA =

Maintainability, AM = Ambiguity, SC = Specification Completion, CS = Consistency.

restore service

The system

SUBJ VERB

shall not VERB

and VERB VERB

OBJ OBJ

 remove faults restore service

AUX NEG VERB

OBJVERB

The system

SUBJ

NEG

and VERB

VERB

shall

VERB

OBJ

not remove faults

AUX VERB

Metrics Type Formula Rationale
Coleman-Liau
Formula

RE 5.89 * (Nl / Nw) - 0.3 * (Ns / (Nw / 100)) - 15.8.
Where:
Nl = n. of letters in the requirements document
Nw = n. of words in the requirements document
Ns = n. of requirement sentences in the requirements

document

It measures the difficulty in reading
the document

Average number
of words per
sentence

RE,
UN

Nw / Ns Short sentences make the
requirements document more
readable/ understandable

Continuance
Index

TR,
MA

Ncon/Ns. Where:
Ncon= n. of continuances in sentences.
Continuances are phrases as “the following:” that
follow an imperative verb and precede the definition of
lower level requirement specification (see Table 2)

The use of continuances indicates
a well structured document, but too
many continuances indicate
multiple, complex requirements

Comment
Frequency

UN

Nc / Ns. Where:
Nc = n. of comment sentences.
 (see Table 1)

The comments within the
requirements document reduce the
risk of misinterpretations

Directives
Frequency

UN

Nd / Ns. Where:
Nd = n. of directives (see Table 2).
Directives are words or phrases that indicate examples
or other illustrative information

Directives make the document
more understandable.

Multiplicity UN Nmul / Ns. Where:
Nmul = n. of sentences having more than one main verb
or more than one direct or indirect complement that
specifies its subject.

The presence of multiple
sentences makes the requirements
document more difficult to be read
and understood

Vagueness AM NVag / Ns. Where:
NVag = n. of sentences including words holding inherent
vagueness, i.e. words having a non uniquely
quantifiable meaning.

The presence of vague sentences
increases the level of ambiguity of
the requirements document

Subjectivity AM Nsub / Ns. Where:
Nsub = n. of sentences referrings to personal opinions
or feelings.

The presence of subjective
sentences increases the level of
ambiguity of the document

Optionality AM Nopt / Ns. Where:
Nopt = n. of sentences containing an optional part

The presence of optional
sentences increases the level of
ambiguity of the document

Weakness AM Nwea / Ns. Where:
Nwea = n. of sentences containing
a weak main verb.

The presence of weak sentences
increases the level of ambiguity of
the requirements document

Underspecification SC Nusp / Ns. Where:
Nusp = n. of sentences having the subject containing a
word identifying a class of objects without a specifier of
this class.

The presence of underspecification
makes the requirements document
not fully specified

Implicity UN Nimp / Ns. Where:
Nimp = n. of sentences having the subject generic rather
than specific.

The presence of implicit sentences
makes the requirements document
prone to be misunderstood

Under-reference CO Nure / Ns. Where:
Nure = n. of sentences containing explicit references to:
-unidentified sentences of the requirements
document itself;
- documents not referenced into the requirements
document itself
- entities not defined nor described into the
requirements document itself.

The presence of these references
introduces inconsistencies in the
requirements document

Unexplaination UN Nune / Ns. Where:
Nune = n. of sentences containing acronyms not
explicitly and completely explained within the
requirements document itself.

The presence of acronyms which
are not explicitly and not
completely explained makes the
document prone to be
misunderstood

Table 3. Metrics

6. A Case Study

As a case study, we have considered a requirements document, taken from an industrial project. We

have analysed the document with QuARS, ARM and SyTwo. This document, provided by Nokia,

describes the functional requirements for the user interface of a new feature (FM radio player) to be

included in a line of mobile terminals. This feature was meant to provide the possibility to use a

phone as a built- in stereo frequency modulation (FM) radio. The first product to include this feature

has been the Nokia Mobile Phone model 8310 [27].

The document analysed is composed of about one hundred Use Cases. The outcomes in terms of

the proposed metrics are reported in Table 4. The information about the quality of the analysed

document provided by these metrics may be summarized as follows.

Observing the values obtained from the calculation of the metrics 1, 5 and 7, we can say that the

terms used in the requirements were not properly selected. In the following we provide some

samples of defective sentences related to these metrics taken from the analysed Use Cases:

This procedure is performed by the user to enter the frequency (Implicit sentence: indicator this).

In addition, the user is naturally able to adjust the volume (Vague sentence: indicator naturally)

The user can switch the radio on by selecting Radio from the menu (Under-specified sentence:

indicator menu).

The word “menu” has been set as under-specified by the tool users. However, while generally the

sentence must be recognized as under-specified, and it is good to have its under-specification

pointed out by the tool, in this particular case the detection of the defect may not trigger any

improvement actions on the document. This is because the user interface configuration and styling

is done independently of (and after) component development and integration. Therefore, it may be

a methodological choice to leave this defect unsolved until the very end of the software integration

phase.

 Metrics name Reference values Actual Value Used tool

1 Vagueness The closer it is to 0 the more unambiguous the

requirements document is

4 QuARS/ SyTwo /

ARM2.1

2 Subjectivity The closer it is to 0 the more unambiguous the

requirements document is

0 QuARS/ SyTwo

3 Optionality The closer it is to 0 the more unambiguous the

requirements document is

0 QuARS

4 Weakness The closer it is to 0 the more unambiguous the

requirements document is

0 QuARS/ SyTwo/

ARM2.1

5 Under-specification The closer it is to 0 the better specified the

requirements document is

19 QuARS

6 Under-reference The closer it is to 0 the more consistent the

requirements document is

0 QuARS

7 Implicity The closer it is to 0 the more understandable the

requirements document is

12 QuARS

8 Unexplaination The closer it is to 0 the more understandable the

requirements document is

0 QuARS

9 Coleman-Liau Formula Typically ranged from 0,4 (easy) to 16,3 (difficult) 17.6 SyTwo

10 Average number of

words per sentence

Simple sentences have a number of words less

than 10 – 12

14,82 QUARS

11 Continuance Index Optimal range: 0.1 – 0.2 0 ARM 2.1

12 Comment Frequency Optimal range: 0.1 – 0.3 0,04 QuARS

13 Directives Frequency Optimal range: 0.1 – 0.3 0,08 ARM 2.1

14 Multiplicity The closer it is to 0 the more understandable the

requirements document is

12 QuARS

Table 4. Metrics values

The values of metrics 9, 10 and 14 indicate that the sentences of the document need to be

simplified in order to decrease the risk to be misinterpreted. Below a sample of a multiple sentence

taken again from the analysed document :

The phone displays the confirmation note Frequency set and goes to the FM Radio state displaying

the selected frequency with the channel number and name if a channel in that frequency has

already been saved earlier.

To avoid the problems associated with the multiplicity this sentence should be split in more than

one simpler sentence.

The values of metrics 12 and 13 seem to indicate that the document is poor of extra information

that might make it more understandable. However, the reference values for these two metrics are

derived from the good practices of NL requirements, and they could be not fully significant for Use

Case requirements, because these kinds of requirements specifications are inherently more

descriptive.

7. Beyond lexical and syntactical analysis

In this section we discuss how the application of NL based techniques can provide an effective

support to deal with Consistency and Completeness issues of requirements expressed by means of

Use Cases.

To effectively address the Consistency and Completeness aspects of requirements specifications,

we should resort to their formalization [11, 26]. Indeed formal methods are a powerful mean to

evaluate requirements since they provide a theoretical framework in which the ir correctness can be

verified. Formal methods require, however, a specific skill and this increases their application cost

prevent ing their wide application in industries. We prefer here to follow a light-weight application

of formal reasoning by means of a study on the relations between actors, with the purpose of facing

consistency and completeness problems in the requirements documents.

We can observe that a system specification written as Use Cases is structured in three semantic

layers:

1) the specification is, at its higher level, composed of a set of Use Cases plus other artefacts and

models ; each Use Case defines a goal for a primary actor and some secondary actors,

establishing relations among actors.

2) in each Use Case the scenario and its extensions play a major role in specifying the system

behaviour; that is they define the sequential control flow, with exceptions defined by the

extensions.

3) each scenario or extension sentence has its internal, linguistic structure, which defines a

relation among (primary and secondary) actors and the operations they perform or take part into.

It is on the third layer that the linguistic analysis has an immediate application, but the structure of

the previous layers gives important information as well. Our aim is the definition of a relational

structure combining both the results of the linguistic analysis on such sentences and the structure

implied by the other layers.

The methods we are investigating strictly rely on the structure of the Use Cases and are based on

the “functional” relations, i.e. the relations or dependencies between actors of a Use Case-based

description of a system.

These relations can be determined looking at the syntactical structure of each sentence of the Use

Case scenarios defining a set of items (quadruples) where each primary actor (the subject of the

sentence) has been put in relation with the secondary actor (the complement) according to the verb.

The canonical form of these relations is :

(1.) (Actor_1, verb_i, Actor_2, Use_Case_id).

Each item compliant with (1.) describes an occurrence of a functional relation between two actors

established by the verb and indicates the Use Case in which this relation occurs.

The functional relations between two actors, in the form of (1.), can be extended, by transitivity, to

other actors when two items with the following form exist: (Ai, v1, Aj,, UCx) and (Aj, v2, Ak, UCy). In

this way functional relation between the actor Ai and the actor Ak is also established. Starting from

this consideration, chains joining different actors can be built, where each item (Ai, vx, Aj ,UCx) of

the chain is such that the previous item has the form (Ak, vy, Ai, UCy) and the following has the form

(Aj, vz, Ah, UCz).

The collection of all the items derivable from a Use Case-based requirements document is said

Relations core. The Relations core allows the whole set of functional relations among actors to be

depicted. The availability of the functional relations could enable some semantic information on the

system we are describing to be captured and from the analysis of these functional relations

undesired, inconsistent and incomplete dynamic behaviors of the system could be shown.

The techniques for extracting such relations from Use Cases documents can be based on available

NLP techniques as the Functional Dependency Grammar (FDG) parsers [8]. These are tools able to

enrich text (plain ASCII or in advanced formats such as XML, SGML, HTML) with functional

dependencies that tell about sentence- level relations and functions between words and linguistic

structures. Figure 4 shows the outcomes of the functional analysis of the sentence “the approver

completes request for submissions”, performed by a recently added component of SyTwo, called

Cmap, that uses these principles to build conceptual maps out of a sentence. The outcome says that

the word approver is the subject of the verb complete, the word request is the direct object of the

verb complete and the word submission is a complement related to the word request.

Figure 4. Functional analysis of a sentence

The use of CMap allows relations between actors in term of quadruples in the form of (1.) to be

derived. Starting from this information, relation graphs can be built becoming the “semantic”

model on which consistency and completeness problems can be studied.

Starting from this preliminary analysis, a research activity aimed to the development of automatic

support to the detection of Consistency and Completeness problems will be conducted, along the

following steps:

- Identification/development of the most effective tools to extract relations from a Use-Case

document and to organize them. We have already cited Cmap, but also Conexor is a good

candidate for doing this. The choice of a XML representation of Use Cases can instead be

indicated as the most convenient technique to gather structural information from Use Cases

documents.

- Study of the properties, derivable from the Relations core, that result most useful to address

typical Consistency and Completeness problems

- Experimentation on a large base of Use Cases documents, with the aim of refining the

approach.

8. Conclusions

Use Cases allow functional requirements to be captured in an effective way by means of scenarios.

Developers have always used typical scenarios (often in graphical form) in order to understand

what the requirements of a system are and how a system works; Use Cases provide a means to

rigorously express requirements along these lines.

20

When expressing goals, scenarios and conditions with NL, it is necessary to identify the defects

due to the inherent ambiguity of NL (for instance: vagueness, poor specification and poor

understandability). For this reason, tools and techniques that were conceived for “traditional”

textual requirements can be effectively applied to Use Cases to detect defects and collect metrics.

We have proposed the use of available linguistic techniques to support the semantic analysis of

Use Cases. Linguistic techniques may provide an effective support towards the achievement of

quality evaluation of NL requirements, but are not sufficient to completely address aspects

related to correctness and consistency of requirements. The rich structural information of Use

Cases adds new possibilities in this direction, when combined with linguistic analysis of their

textual information.

Acknowledgements

Part of the research work that is described in this paper was performed under the Eureka ? ?2023

Programme, ITEA (ip00004, CAFÉ [10]).

9. References

[1] Abrial JR. The B Book - Assigning Programs to Meanings. Cambridge University Press, August 1996.

[2] Alspaugh TA, Antòn AI. Scenario Networks: A Case Study of the Enhanced Messaging System, 7th International

Workshop on Requirements Engineering: Foundation for Software Quality REFSQ'01, Interlaken, Switzerland, June

2001.

[3] Ambriola V, Gervasi V. Processing Natural Language Requirements, 12th IEEE Conf. On Automated Software

Engineering (ASE'97), IEEE Computer Society Press, Nov. 1997.

[4] Ben Achour C, Tawbi M, Souveyet C. Bridging the Gap between Users and Requirements Engineering: The Scenario-

Based Approach (CREWS Report Series 99-07), International Journal of Computer Systems Science and Engineering,

Special Issue on Object-Oriented Information Systems, Vol. 14, N. 6, 1999.

[5] Bolognesi T, Brinksma E. Introduction to the ISO Specification Language LOTOS. Computer Networks, 14 (1), 25-59,

1987.

[6] Cockburn A. Writing Effective Use Cases, Addison-Wesley, 2000.

[7] Cockburn A. Structuring Use Cases with goals, Journal of Object-Oriented Programming, Sep-Oct 1997 (part I) and

Nov-Dec 1997 (part II).

[8] Conexor tool. See http://www.conexoroy.com/

[9] Dutoit AH, Peach B. Developing Guidance and Tool Support for Rationale-based Use Case Specification, REFSQ'01,

Interlaken, Switzerland, June 2001.

[10] Van der Linden F. Software Product Families in Europe : The ESAPS & Café Projects IEEE Software, Vol 19, n. 4,

July/August 2002.

21

[11] Fantechi A, Gnesi S, Ristori G, Carenini M, Vanocchi M, Moreschini P. Assisting requirement formalization by means

of natural language translation, Formal Methods in System Design, vol 4, n.3, pp. 243-263, Kluwer Academic

Publishers, 1994.

[12] Fabbrini F, Fusani M, Gnesi S, Lami G. An Automatic Quality Evaluation for Natural Language Requirements, 7th

International Workshop on Requirements Engineering: Foundation for Software Quality REFSQ’01, Interlaken,

Switzerland, June 2001.

[13] Fabbrini F, Fusani M, Gnesi S, Lami G. The Linguistic Approach to the Natural Language Requirements Quality:

Benefits of the use of an Automatic Tool, 26th Annual IEEE Computer Society - NASA Goddard Space Flight Center

Software Engineering Workshop, Greenbelt, MA, USA, November 2001.

[14] Fuchs NE, Schwitter R. Specifying Logic Programs in Controlled Natural Language, Workshop on Computational

Logic for Natural Language Processing, Edinburgh, April 1995.

[15] Goldin L, Berry DM. Abstfinder, a prototype Abstraction Finder for Natural Language Text for Use in Requirements

Elicitation: Design, Methodology, and Evaluation. First International Conference on Requirements Engineering, 1994.

[16] Hooks I. Writing Good Requirements, Proc. Of the Fourth International Symposium of the NCOSE , Vol. 2., 1994.

[17] ISO/IEC TR 15504 (Parts 1-9), 1998

[18] Jacobson I, Booch G, Rumbaugh J. The Unified Modelling Language Reference Manual. Addison-Wesley, 1999.

[19] Kamsties E, Peach B. Taming Ambiguity in Natural Language Requirements, ICSSEA 2000, Paris, December 2000.

[20] Macias B, Pulman SG. Natural Language processing for requirement specifications. In Redmill and Anderson, Safety

Critical Systems, Chapman and Hall, 1993.

[21] Mich L, Garigliano R. Ambiguity Measures in Requirement Engineering. Int. Conf. On Software Theory and Practice -

ICS 2000, Beijing, China, Aug. 2000.

[22] Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J. Evaluating Automated Support for Requirements

Similarity Analysis in Market-Driven development Seventh International Workshop on Requirements Engineering:

Foundation for Software Quality, Interlaken, Switzerland, June 2001.

[23] Spivey JM. The Z Notation: A Reference Manual, 2nd edn., London Prentice-Hall, 1992.

[24] SyTwo on-line. See: http://www.yana.net/sytwo/index.html

[25] Wilson WM , Rosenberg LH. Hyatt LE. Automated Analysis of Requirement Specifications. Proceedings of the

Nineteenth International Conference on Software Engineering (ICSE-97), Boston, MA, May 1997.

[26] Zowghi D, Gervasi V, McRae A. Using Default Reasoning to Discover Inconsistencies in Natural Language

Requirements, Proc. of the 8th Asia-Pacific Software Engineering Conference, December 2001.

[27] http://www.nokia.com/phones/8310/index.html

