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DESCRIPTION OF THE WORKSHOP  

Trust is important in many kinds of interactions (human-human, human computer, 
human-human through computers, and more in general among social agents) in order 
to define those elements (nature, features and interrelations) that are essential in 
social reliability. 

With the growing impact of electronic societies, trust, reputation, privacy, and 
identity become more and more important. Trust is not just a simple and monolithic 
concept, it has different facets, levels, and kinds. We can consider: trust in the 
environment and in the infrastructure (the socio-technical system) including trust in 
your personal agent and in other mediating agents; trust in the potential partners; trust 
in the warrantors and authorities (if any). Another growing trend is the use of 
reputation mechanisms, and in particular the interesting link between trust and 
reputation. Many computational and theoretical models and approaches to reputation 
have been developed in the last few years. In all these cases, electronic personas may 
be created in many different forums (ecommerce, social networks, blogs, etc). Also 
the identity and associated trustworthiness must be ascertained for reliable 
interactions and transactions. 

Trust is foundational to the notion of agency and for its defining relation of acting 
"on behalf of". It is also critical for modeling and supporting groups and teams, 
organizations, co-ordination, negotiation, with the related trade-off between 
individual utility and collective interest. Further, computer technology can even break 
trust relationships already held in human organizations and relations, and favor 
additional problems of deception and trust. 

The aim of the workshop is to bring together researchers (even from different 
disciplines) who can contribute to a better understanding of trust and reputation in 
agent societies. Most agent models assume trustworthy communication to exist 
between agents. However, this ideal situation is seldom met in reality. In the human 
societies, many techniques (e.g. contracts, signatures, long-term personal 



relationships, reputation) have been evolved over time to detect and prevent 
deception and fraud in communication, exchanges and relations, and hence to assure 
trust between agents. Artificial societies will need analogous techniques. 

We encourage an interdisciplinary focus of the workshop - although focused on 
virtual environments and artificial agents - as well as presentations of a wide range of 
models of deception, fraud, reputation and trust building. 

Suitable submissions may describe the key elements of social reliability and any 
topics closely associated with trust such as reputation, privacy, norms, and identity. 
All facets of trust are relevant. These include trust in ¥ the environment and the 
infrastructure (as in a socio-technical system) ¥ user assisting and mediating agents; ¥ 
potential partners, including their electronic personas in commerce and social media; 
¥ warrantors and authorities. 

We welcome computational and theoretical models and approaches to trust as well as 
applications and empirical studies on trust. We particularly encourage 
interdisciplinary contributions that shed new light on the above topics. 

This edition of the workshop will emphasize the theme of ÒTrust and AgreementÓ. 

The topics of interest include, but are not restricted to, applications, concepts, 
models, theories, mechanisms (including architecture, design, and protocols), 
techniques, and evaluations of 

¥ Trust 

¥ Deception and fraud and its detection and prevention 

¥ Reputation 

¥ Privacy and access control 

¥ Identity in virtual worlds 

¥ Autonomy, delegation, ownership 

¥ Policies, interoperability, protocols, ontologies, and standards 

¥ Scalability and distribution 

¥ Test-beds and frameworks 

¥ Legal aspects 

¥ Organizations and institutions, include regulation and regimentation 

¥ SPECIAL THEME: Trust and Agreement 
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Reputation Estimation based on Online Social
Network Structure: A Relational Capital Model

Suratna Budalakoti1 and K. Suzanne Barber2

1 suratna@utexas.edu
2 sbarber@identity.utexas.edu
The University of Texas at Austin

Abstract. The problem of identifying in
uencers in an online social
network (OSN) has received a lot of attention recently. Howev er, the
in
uence a user has on an OSN depends a lot on how active they are,
besides their reputation, or the quality of information they are capable
of providing. This can be misleading: a common observation about many
OSNs is that the most in
uential users there are not well-known in the
real world. In contrast, we investigate the problem of autom atically iden-
tifying reputed users on an OSN, independent of their level of activity.
The investigation is based on a social/relational capital g eneration based
model of user behavior on OSNs, where users pay each other in social
capital to make connections. We formalize this idea using a tournament-
based model known as fair bets. The model is tested on simulated OSN
data, where it proves to be more accurate than baseline approaches for
reputation aggregation in OSNs, such as PageRank.

Keywords: Trust, Reputation,Social Capital,Social Networks

1 Introduction

A remarkable development of the last few years has been the move online,
from anonymity or pseudo-anonymity, to identities that can be mapped
to people in the real world. This trend, combined with the inc reasing
reliance on the Internet for information, means that an indi vidual's online
reputation is becoming an increasingly important factor in how they are
perceived by others o�ine. There are many problems with usin g online
information to draw conclusions, as it is an imperfect recor d of real world
activity. However, given its easy availability, it is inevita ble that online
information will be used more and more to draw conclusions about an
individual's real world pro�le.
An interesting question then is, what can be said about an indi vidual's
real-world reputation, given online information about the m. We focus
on a narrower version of the problem: what can a member's position in
the structure of an online social network (OSN) say about her r eal world
trust networks, and her reputation there. The term reputation is de�ned
here, following J�sang et al. [1], as \a collective measure of trustworthi-
ness, based on the referrals or ratings of members in a community". The
community we are interested in is an individual's profession al peer group,
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or the community of people interested in the topics she claim s compe-
tence in. This peer community is (imperfectly) re
ected in OSN data,
in the form of other member pro�les on the OSN. Similarly, real world
peer trust ratings are often unavailable. However, the behavior of an in-
dividual's peers on an OSN, when they interact with her, can pro vide
clues about how trusted she is. Falcone and Castelfranchi [2] note that
\to be trusted: i) increases the chance to be requested or accepted as a
partner for exchange or cooperation; ii) improves the price, the contract
that the agent can obtain". Looking for these signals in OSN dat a can
help identify which members have a high reputation in the rea l world.
We focus on reputation in professional settings, as computational models
of personal trust and reputation raise philosophically com plicated issues
[3].

The related problem of identifying high-pro�le online users , or in
u-
encers, has received signi�cant attention [4, 5] in the OSN research com-
munity. Usually, in
uence is measured as the extent to which a member's
behavior a�ects her peers on an OSN, for example, by convincing them
to buy a product, or be favorably disposed towards a particul ar opinion.
Such information can be very useful from a marketing perspective. Also,
it is often assumed that a person who is highly reputed in a top ic would
have higher in
uence than a less reputed one. Thus, for example, the list
of topic-sensitive in
uencers [6], or extremely in
uential people in a topic
on an OSN, would ideally consist of individuals known to be expert s on
the topic. However, this is not always the case. For example, Khr abov et
al. [7] found that many in
uencers on the popular microblogg ing website
Twitter 3 are relatively unknown in the real world. A major reason for
this anomaly is the extremely competitive nature of the quest f or online
in
uence, in terms of time and e�ort. Many people who are high ly re-
puted in their �elds may not be willing to invest these to the s ame extent
as less reputed people.

This is not a concern for many applications. For example, if ma rketeers
need to know which users on an OSN should be engaged to market a prod-
uct, they largely care about their online in
uence, not thei r real world
reputation. On the other hand, there are many scenarios where reputa-
tion might be the primary concern. For example, many people re ly on
information shared on blogs, or microblogging forums (e.g., Twitter) to
�nd information in their areas of interest. It is likely many of them would
be at least as interested in highly reputed users, as in in
uential ones.
Or if a company is looking to �ll a job position 4 , reputation might be a
greater concern than in
uence. Also in the marketing domain , Carl [8]
has argued that an overwhelming majority of word-of-mouth m arketing
takes places o�ine, in which case reputation is a factor wort h consider-
ing. Separating reputation and in
uence will also provide be tter insight
into the relationship between online and real world prestig e.

3 www.twitter.com
4 A number of websites, for example, LinkedIn(www.linkedin.c om), and StackOver
ow

(www.stackover
ow.com), combine professional social networking or expert �nding
with recruitment solutions.
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We base our reputation estimation algorithms on the concept s of social
and relational capital [9, 2]. The intuition is that users on an OSN that
have a high reputation have more relational capital, that is a larger num-
ber of reputed people are positively disposed towards them,as compared
to less reputed users. As a result they need to expend less e�ort to attain
the same level of connections (in number and quality), as less reputed
users. This can be modeled as follows: assuming users on an OSNpaid
each other in some form of capital to accept social connections. Then
highly reputed users are those that do not have to pay very oft en, but
themselves get paid quite often. In other words, when they pay, on aver-
age, they can a�ord to pay much more. This idea is formalized i n later
sections using the fair bets model [10, 11].

2 Background and Related Work

A natural representation of an OSN is as a graph, with members r ep-
resented as vertices, and edges representing an interaction. The edges
may be directed or undirected depending on the interaction t ype: a sym-
metric connection might be represented by an undirected edge, while a
directed edge can be used to signify who sent the invitation. Directed
edges can also be used for OSNs that allow for asymmetric connection (a
connection need not be accepted to exist, as, for example, in Twitter). A
common assumption [12, 13] is that, if user A took the initiative to send
an invitation to user B , then that counts as an endorsement from user
A to B .
An interesting aspect of this scenario is that the interacti ons that result in
online connections take place o�ine. As a result, it is usual ly impossible
to know what prompted user A to connect to user B , how often they
have interacted in the past, and what A's experiences were during these
interactions. It is also not known that if, on the other hand, u ser A has
not invited user B , it is because they are not acquainted with each other
or have not interacted su�ciently, or because user A distrusts user B .
As a result, many traditional reputation aggregation metho ds, such as
belief models [14] and reinforcement learning-based methods [15], do not
�t naturally in this scenario. On the other hand, due to the gra ph-based
structure of problem representation, eigenvector-based approaches [16,
17] inspired by PageRank [18] are a better �t for the problem. These
approaches posit a recursive de�nition of a vertex's reputat ion score in
the graph, as a weighted sum of the reputation score of all the vertices
that point to it.
Variations of eigenvector-based approaches are also popular in the OSN
community for the task of in
uence estimation [6]. While well -suited to
�nding in
uencers, in their present form, they have signi�c ant drawbacks
when it comes to reputation estimation. They do not take into account
a user's activity level when estimating their score. This is a reasonable
decision when identifying in
uencers: if an in
uential user is highly active
on an OSN, this does not detract from the level of in
uence they have.
Reputation, however, has a di�erent dynamic.
A user's in
uence on an OSN depends on two factors: a) her reputation,
which determines the value other people see in a connection with her,
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and b) her visibility on the OSN, that is, the likelihood that she will be
noticed by other users. A user with a lower reputation level c an become
more in
uential by increasing her visibility. This can be ach ieved through
increased activity (for example, by engaging other members in di�erent
ways), or increased connectivity (by sending more invitations ). On the
other hand, users that are highly reputed in the real world, a re likely
to receive invitations even with lower level of online activit y. In other
words, a user's reputation in the real world can be roughly me asured as
the degree of in
uence she has on an OSN, normalized by her level of
activity. In the next section, we formalize this intuition usi ng the concept
of social capital.

3 Social and Relational Capital in an OSN

Social capital [9, 19] is a concept used to refer to value generated by the
resources that can be mobilized via an individual's social connections.
Boxman et al. [20] de�ned social capital as \The number of peop le who
can be expected to provide support and the resources those people have
at their disposal". However, in the past, the term has been used ambigu-
ously to also refer to the collective advantage that a group attains by
being better connected. Due to this reason, Falcone and Castelfranchi
have proposed the term relational capital be used instead, to represent
\how much the agent is valued by other agents in a given market for a
given task" [2], with the intent of separating an individual's advantage,
from that of the entire group.
Putnam [9] divides social capital into bonding and bridging s ocial cap-
ital. Bonding social (or relational) capital is the capital generated for
an individual by the connections made within a social communi ty, while
bridging social capital refers to the capital an individual g enerates by
links made across social communities. From this perspective, OSNs can
be seen as being used by its members for the purpose of maintaining and
growing their social capital [19]. Thus for example, when users connect
with old acquaintances on an OSN, this helps to maintain or incr ease the
existing bonding capital, which can be mobilized later if requ ired. On the
other hand, connections made outside one's community, for example to
highly reputed or in
uential people in one's professional � eld, increase
one's bridging social capital.
These two types of social capital, bridging and bonding, can be mapped
to two di�erent types of network growth patterns documented o n online
networks. The �tness-based preferential attachment model [21], where
the indegree of each vertex grows with a probability proport ional to its
�tness (which can correspond to reputation), and its curren t indegree,
can be seen as a result of users trying to build their bridging capital.
Bonding can be mapped to the phenomenon on triadic closure [22, 23]
observed on OSNs, where networks grow by closing incomplete triangles
(connection of a connection).
A few conclusions can be drawn based on this interpretation. People are
more eager to connect to highly reputed users as they have more bridging
capital, and will work harder to discover them on the OSN, looki ng be-
yond their immediate network. As a result, users who are highl y reputed
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will receive more and stronger incoming links, even with low vi sibility on
the OSN. Also, the overall quality of links created via triadic cl osure will
be higher, as the peer group of users with higher reputation is likely to
have higher than average authority, assuming the concept of homophily
[24] holds.
On the other hand, users with lower o�ine reputation might als o prove
themselves valuable users to connect to, for the purpose of generating
relational capital, but this is likely to be via one of two ways: a) achieving
high visibility on the OSN via higher levels of activity, or b) gen erating
relational capital for themselves by connecting to others w ho already
have that capital (due to their higher reputations).
In the next section, we discuss how these ideas can be formalized in a
mathematical model, called the fair bets model.

4 The Fair Bets Model

The fair bets model has traditionally been used [25, 10, 11] to rank players
in round-robin tournaments. A player's behavior in the model is visual-
ized as follows: she is allowed to bet a certain amount of money per
game, which has to be �xed across all games she plays, irrespective of
the opponent. She forfeits this amount to her opponent if she loses the
game, and if she wins, she is awarded the amount bet by her opponent.
Then the amount she can a�ord to bet per game is the score assigned to
her.
Mathematically, this can be represented as follows: construct a graph G,
with each player i as a vertex vi , and assume that each player has played
at most one game against any other player (this can be generalized).
Then draw an edge directed from the loser of the game to the winner.
A matrix representation of this graph can then be written as V , where
vij = 1 if there is an edge directed from player i to j in the graph. Then
the fair bets score aj of player j follows the following equation:

NX

i =1

vij ai =
NX

i =1

vji aj (1)

That is, a player j 's payout per game (aj ) is the amount she makes in
total, divided by the number of games lost. In matrix form:

V > a = Ca (2)

C is a diagonal matrix with Cii equal to the sum of the ith row of V ,
i.e., Cii =

P N
k =1 vik .

A relationship can be established between PageRank and fairbets scores
[25]. For a right stochastic matrix P , the PageRank vector r correspond-
ing to the matrix is given by the equation:

P > r = r (3)

Let P = C � 1V . That is, P is the stochastic matrix given by normalizing
all the rows of some matrix V to 1.
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Then, equation (3) can be written as:

V > C � 1r = r (4)

) C � 1V >
�
C � 1r

�
= C � 1r (5)

Setting a = C � 1r gives:

C � 1V > a = a (6)

) V > a = Ca (7)

which is the same as equation (2). That is, if the PageRank vector for a
stochastic matrix P is given by r , then the fair bets vector of the original
graph matrix V = CP is given by a = C � 1r . Thus, mathematically, the
fair bets score of a vertex in a graph is equal to its PageRank score,
divided by its outdegree.

4.1 Fair Bets as Relational Capital

In the context of online social networks, fair bets can be viewed as a
model of relational capital accumulation and expenditure. A n OSN's
members tend to connect to members who are likely to provide useful
information or members who can help them in achieving professional
growth, that is, members with high relational capital. This initial expen-
diture of relational capital spent in sending invitations pa ys o�, as the
user accumulates invitations (payments) in return. Highly re puted users
receive multiple invitations without making a signi�cant e�o rt, while the
payo� for less reputed users is lower. On the other hand, if hig hly reputed
users decide to spend their capital by sending invitations, t heir payo�
per invitation is proportionately much larger.

4.2 Variations on The Fair Bets Model

For an OSN graph, the standard fair bets model assumes a linear re-
lationship between a vertex's authority score and its outdeg ree. As the
fair bets score is given as the PageRank score divided by the outdegree,
a user's PageRank must grow at a constant rate with invitation s sent.
Whether such a relationship holds, depends on the dynamics on the net-
work. In practise, a user's network is likely to saturate over time, so that
new invitations sent lead to fewer and fewer invitations back.
Consider an OSN with the following dynamic: new users that join the
network see an initial spurt in the rate at which their networ k grows.
Each invitation that they send out increases the circle to whi ch they
are visible, leading to many more invitations back to them. Over time,
though, as most connections-of-connections are now their �rst degree
connections, they receive fewer invitations back for each invitation sent.
This dynamic can be modeled by assuming that the expected value of
links received once k invites have been sent is 1

k . This expected value
includes both the probability of receiving a link, and the valu e of the
link. Then, since

P k
i =1

1
i can be approximated as logk. Given this kind

of dynamic, a better measure of a user's reputation, might be:
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Fig. 1. Sensitivity of PageRank, Fair Bets, and Harmonic Fair Bets to A ctivity Levels

r i =
� i

log oi
(8)

where � i is the user's PageRank score, andoi is her outdegree, or the
number of invitations sent. This measure can be referred to as the log
fair bets. Log fair bets can be interpreted as assuming that t he arrival
patterns of incoming links follows a power law distribution w ith respect
to time (measured by outdegree). On the other hand, assuming that the
mean value of an incoming link falls even more steeply with activity, say
the expected value of an incoming link for a user is 1

k 2 . Since H k;m =
P k

i =1 i m is the de�nition of a generalized Harmonic number, we can
de�ne a new measure, the Harmonic fair bets measurehi for user i , set
as:

hi =
� i

H (oi ; m)
(9)

In our experiments, m was set as 2. In the next section, we investigate,
using a simulation based approach, various variants of the fair bets mea-
sure, including log fair bets, and their suitability for di� erent types of
OSNs, based on its characteristics.

5 Simulation Experiments

We consider two models of social network growth based on pastresearch:
preferential attachment models, and triadic closure based models.
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Reputation Measure
Growth Model PageRank Fair Bets Harmonic Fair Bets

Preferential Attachment Model 0.26 0.56 0.72
Triadic Closure Model 0.16 0.61 0.41

Table 1. Rank Correlation with Fitness (hidden reputation value) of various reputation
models, using Spearman's� measure

1. Preferential Attachment Model [21]: As mentioned earlie r, this model
can be seen as describing OSNs where bridging social capital domi-
nates. In such OSNs, users tend to seek out experts in their area, even
when they are not part of their immediate social circle. Howe ver,
they are still more likely to �nd users who have lots of connec tions,
as opposed to users who have fewer connections.

2. Triadic Closure Model [22, 23]: This model is better suite d to de-
scribe the growth dynamics of OSNs where users are looking to
maintain their bonding social capital. Such networks grow by closing
`triangles'. Users grow their network by inviting their seco nd degree
connections to become their �rst degree connections.

The preferential attachment (PA) model is simulated as foll ows: we start
with a graph of zero vertices. At each timestep, with a small p robability
(0:02), a new vertex is added to the graph. The vertex is assignedone of
�ve �tness levels (1 � 5). Level 5 corresponds to a user with the highest
reputation level, while level 1 corresponds to one with the l owest. The
levels are drawn from a power law distribution, so that the pr obability
of drawing a level 5 edge is one-�fth that of drawing a level 1 v ertex.
If a new vertex is not drawn, one of the existing vertices v1 sends an
invitation to connect to another vertex v2 , where the probability of se-
lecting any vertex v2 is proportional to the product of its indegree and
its �tness level. The intuition is that the probability that v1 will see v2 's
pro�le is proportional to v2 's popularity, which is its indegree, while the
probability that v1 will want to connect to the pro�le is proportional to
its �tness level. The model is similar to the one described in by Bianconi
et al. [21].
The triadic closure (TC) model is set up to draw vertices from a power
law distribution with 5 levels, similar to the PA model. A ver tex v1 in
the TC model grows its network as follows: at each timestep it selects
one of its �rst-degree connections, say v2 , at random. From the list of
connections ofv2 , it selects a new connectionv3 to invite to connect. The
probability of selection of a particular v3 is proportional to its �tness
level. The model is based on the one described by Jin et al. [23], with
the addition of the �tness level concept, to model reputatio n.
Table 1 shows the rank correlation, using Spearman's � measure, of the
assigned �tness level of a user, to the PageRank, Fair Bets (FB), and
Harmonic Fair Bets (HFB) score assigned to them, for the two g rowth
models. As can be seen both FB and HFB correlate much better with the
�tness level, compared to PageRank. This shows that PageRank is not a
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good measure of reputation levels. In contrast, Fair Bets and Harmonic
Fair Bets do much better. Figure 1 shows how the three measures vary
with user activity levels for all Level 2 vertices, for the PA m odel. The
vertices on the x-axis are ordered chronologically, so the ones on the
left have had the most time to be active, while those on the rig ht have
had the least. As all vertices shown are of Level 2, ideally they should
have the same reputation score. The �gure shows the deviation from this
ideal score, that is, the error around 0. As can be seen, PageRank is very
sensitive to activity. The longer the vertex has been in the sys tem, the
higher its score. Fair Bets, on the other hand, seems to over-correct for
activity level, with less active vertices receiving a disprop ortionately high
score. Harmonic Fair Bets sticks closest to the 0 line. However, Fair Bets
performs better for the triadic closure model (Table 1). The reasons for
this are not obvious, given the complexity of even seemingly simple graph
evolution models. We plan to investigate the reasons for thi s further in
future work.

6 Conclusion

This paper introduces a new problem to the �eld of reputation mod-
eling. Given the structure of an online social network graph, what can
we say about their o�ine reputation. We propose a possible ap proach
to addressing this based on the following observation: highly reputed in-
dividuals have a lot of social/relational capital, which cau ses them to
be treated di�erently from individuals with a relatively low er reputa-
tion. Taking this observation into account, it is possible to estimate user
reputation, even when explicit trust values are not availabl e. Based on
this, we develop an approach for o�ine reputation estimatio n in OSN,
and test it on simulations based on standard models of OSN growth. We
show that the PageRank measure, while suitable for measuring in
uence,
is not e�ective for estimating reputation values, as it is to o easily mislead
by activity levels. On the other hand, two new reputation measu res, fair
bets and harmonic fair bets, give more promising results.
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Abstract. Trust and reputation are signi�cant components in open dy-
namic systems for making informed and reliable decisions. State-of-the-
art trust models that exploit reputational evidence generally rely on re-
ports from as many sources as possible. Situations exist, however, where
seeking evidence from all possible sources is unrealistic. This is partic-
ularly the case in resource-constrained environments where querying in-
formation sources is costly, for instance in terms of time and bandwidth.
This paper describes an approach that exploits diversity among infor-
mation sources in order to select a small number of candidates to query
for reputational evidence. We demonstrate that reliable decisions can
be reached using evidence from small groups of individuals. We show
that our approach is robust in contexts of variable trust in reputational
sources and to a degree of deception.

Categories and Subject Descriptors: I.2.11 [Distributed Arti�cial
Intelligence]: Multi-Agent Systems

General Terms: Experimentation, Performance

Keywords: Diversity, Reputation, Trust

1 Introduction

Reputation-based trust is a critical mechanism in large, open, and dynamic sys-
tems, where agents must interact with one another in order to achieve their
goals. Agents operating in such environments often rely onindirect experience
acquired from their peers in order to make informed decisions, especially when
direct experience on a subject is lacking or insu�cient [10]. Whereas state-of-
the-art trust models exploiting this kind of evidence generally rely on reports
from as many sources as possible, in the physical world capturing and distribut-
ing evidence can be costly. For instance, in distributed environments such as
peer-to-peer networks, sensor networks, and pervasive computing, each partic-
ipant is responsible for collecting and combining evidence from others due to
lack of central authority or repository. A major constraint in such systems is
bandwidth, motivating the need to minimise the number of messages exchanged
in order to arrive at a decision. As a result, reputation assessments are often
based on a subset of evidence, usually from the agent's neighbourhood [3], an
approach which in itself can be problematic, as it does not make use of all the
information available, and therefore is prone to biases and deception.
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2 Reputation-based Trust Evaluations through Diversity

Motivated by this problem, we present an approach for minimising the costs
associated with making e�ective trust assessments, while still remaining robust
to biases and deception. In particular, we exploitdiversity among information
sources to intelligently sample from thecrowd of reputation sources. Our notion
of diversity is inspired by the work of Surowiecki et al. [8]. Their work highlights
some interesting criteria for e�ective decisions in large groups of individuals.
Diversity ensures that the experiences of di�erent agents based on their private
information is exploited in a decision process. As agents most often operate in
social contexts where interaction with others is inevitable, so much could go to
in
uence their behaviour. Agent behaviour could be conditioned by organisation,
profession, or proximity to other agents in a network. While Surowiecki et al.
consider such e�ects detrimental to a decision process because of the possibilities
of collusive behaviour and subjectivity of opinions, we see great potential. For
example, where logical subgroups exist in the agent population as informed by a
feature-behaviour correlation, we can exploit this to limit the number of agents
queried for evidence. In the sections that follow, we demonstrate how this concept
can be employed in a manner that leads to positive outcomes.

The rest of this paper is organised as follows: Section 2 highlights the di�erent
components of the diversity model. An evaluation of the approach is presented
in Section 3, and in Section 4 we conclude with a discussion and avenues for
future research.

2 The Diversity Model

The Diversity Model (DM) enables an agent to arrive at reliable decisions using
evidence from small groups of individuals. The model employs trust and machine
learning techniques in order to build models of information sources from which
potential candidates may be sampled for evidence.

We consider an evaluatorx, who wishes to evaluate the truth of a proposition
� , and has access to a set of information sourcesA, where individual information
sources or agents are denotedx; y; ::: 2 A. The notation x will be used in the
course of this paper to denote an agent acting in the capacity of an evaluator,
while the notation y will be used to represent an agent regarded as an information
source. In a more general sense, an agent is regarded as a tuplehID; F; Ri , where
ID denotes a unique identi�er, F is a set of features, andR is a set of past
reports.

A report R , is an opinion about a subject � , provided by an agent y, to an
evaluator x, in response to a query. An agenty, records its perceived opinion
about � as R y;� , and reports R y! x;� when queried byx. The variable t denotes
a time step associated with a report fromy, such that R t

y;� represents a report
at time t. Consequently,R t :t + k

y ! x;� denotes the set of reports received byx from y
between the interval t and t + k.

Let F denote a �nite set of features, such that f 1; f 2; :::; f d 2 F . We de�ne
a feature as an observable attribute of an agent, e.g., an agent's organisation or
its location. An evaluator x, has a view on the relative importance of features
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Reputation-based Trust Evaluations through Diversity 3

represented by the vectorhwx
1 ; wx

2 ; :::; wx
d i , wherewx

i is x's view of the importance
of feature f i , and wx

i :! [0; 1]. Subsequently, an evaluator uses this metric to
compute the similarity between di�erent agents. Similarity between agents is,
therefore, a measure of thedistance between their features as informed by the
vector of weights on the features. We employ theweighted Euclidean distanceto
compute similarity between any two agentsy1 and y2 as:

D F
y1 ;y 2

= ky1 � y2k � F =

vu
u
t

jF jX

k=1

wk
�
f k y1

� f k y2

� 2
: (1)

2.1 Group

Let G denote a strati�cation on A, such that G = f Gi ; Gj ; :::; Gm g where
Gi

T
Gj = ; , if i 6= j . We de�ne a group Gi as a collection of homogenous

agents, such that f x : x 2 Gi ; Gi 2 Gg = A. Groups are formed subjectively by
an agent who attempts to disambiguate what metrics lead to a better strati�ca-
tion of information sources. The group formation process is discussed in Section
2.3. However, the aim of an agent in partitioning the population, is to provide
a suitable generalisation of information sources using di�erent distinguishing
characteristics. Subsequently, an agent exploits this model to limit the number
of sources queried for evidence, and to protect itself against deception. Agents
are partitioned into groups based on how similar they are to one another, as
speci�ed by a similarity metric. We denote by Gi (y ) , an agent y's membership
of a group Gi . An agent x, maintains two parameters � x

GF
i

and � x
GB

i
, which de-

note the feature-based similarity and the behaviour-based similarity of a group
respectively.

The feature similarity � x
GF

i
of a group is the degree of similarity of members

of the group given their features. This parameter is measured by computing the
average weighted distance between pairs of agents in the group as follows:

� x
GF

i
= 1 � 2

n (n � 1)

X

yp ;y q 2 G i

D F
yp ;y q

where p < q, and n = jGi j. (2)

An evaluator learns over time the importance of di�erent features while com-
puting similarity. Consider for instance, the following feature set hage, profes-
sion, locationi describing agents in a population. An agent may assign di�erent
weights to di�erent features while measuring similarity. For example, an agent
could measure similarity usingage, or location, a combination of age and loca-
tion, etc. Although di�erent feature subsets may de�ne di�erent subgroups in the
population, not all feature subsets might be distinguishing enough for identifying
relevant subgroups in the population. In an example scenario, an agent wishing
to evaluate the reliability of a delivery company, may learn informing subgroups
in the population of reputation providers, by partitioning agents based on their
location for instance, rather than their age or profession. The fact that some lo-
cations may be easily accessible (e.g. metropolitan areas), than others (e.g. rural
areas), might impact on the satisfaction level of agents obtaining services from
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4 Reputation-based Trust Evaluations through Diversity

the company, and potentially reveal a relationship between the featurelocation
and the ratings obtained from agents.

The behaviour similarity of a group � x
GB

i
, is a subjective measure of the like-

lihood of agents in the group behaving in a similar manner. In the context of
this paper, behaviour is represented by the report of agents. It is important to
emphasise here that behaviour similarity does not capture a semblance of the
agents based on their level of trustworthiness (e.g. honest, deceitful), rather it
is a measure of the consistency of agents in giving similar reports (be it honest
or deceptive ones), in response to the same query. Although agents belonging to
the same group may be regarded as having the same level of trustworthiness as
depicted in Section 2.2, in our model this condition alone does not satisfy the
criteria for grouping agents. It is possible for dissimilar agents to have similar
level of trustworthiness (e.g. agents from di�erent but highly reputable organisa-
tions). In order to e�ectively exploit diversity in the system, our model requires
agents in a group to be similar both in feature and behaviour. To compute the
� x

GB
i

of a group, a report matrix is constructed as illustrated in Figure 1. The

t 1 t 2 t 3 t 4

y1 1 5 1 4
y2 4 1 5 1
y3 1 5 2 4

Fig. 1. Report matrix for similarity calculation

matrix captures the rating provided by di�erent agents in a given sampling inter-
val. A sampling interval is the time frame for which reports from di�erent agents
are considered, and is the same for all the agents. In Figure 1 for example, the
sampling interval considered ist1 : t4 (i.e. t1; t2; t3,t4), and the reports from the
agents could be represented asR t 1 :t 4

y i ! x;� , i = 1 ; ::; 3. Also, agentsy1 and y3 with
report vectors h1; 5; 1; 4i and h1; 5; 2; 4i respectively, may be considered much
more similar to each other than agentsy1 and y2 with report vectors h1; 5; 1; 4i
and h4; 1; 5; 1i respectively. Details for the computation of this measure is given
in Equation 3 and Equation 4.

D R
y1 ;y 2

=
1
h

s X

t 2 h

�
R t

y1 ;� � R t
y2 ;�

� 2
; (3)

where h 2 H represents the number of past reports taken into consideration.
Following Equation 3, � x

GB
i

of a group Gi can be computed as:

� x
GB

i
= 1 � 2

n (n � 1)

X

yp ;y q 2 G i

D R
yp ;y q

where p < q, and n = jGi j. (4)

2.2 Group Trust and Subjective Logic

An evaluator depending on evidence from third party sources faces the risk of
misleading reports from these sources. Not all agents may act in a benevolent
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Reputation-based Trust Evaluations through Diversity 5

manner or even possess a required level of expertise to report on a subject.
Sometimes information sources may exaggerate perceived opinion, or o�er tes-
timonies that are outrightly false. Finding ways to reduce the in
uence of mis-
leading reports from third-party sources is a fundamental problem in reputation
systems [10]. One way of mitigating against this problem, is maintaining a rep-
utation of the information sources, and using this to determine the weight given
to their reports [9].

Subjective Logic (SL) [1] is a belief calculus which allows agents to express
opinions as degrees of belief, disbelief, and uncertainty about propositions. Bi-
nary propositions, such as agent y, is trustworthy concerning� , lead to opinions
which are equivalent to a beta distribution. SL contains operations to represent
consensus, recommendation, and ordering, which are useful tools for evidence ag-
gregation. We adopt SL to represent trust because it provides an intuitive way
to represent the belief an entity has in another, and a way to aggregate evidence
to support such belief. An evaluator x's opinion about an agent y, reporting
correctly on � is represented in Subjective Logic as a tuple:

! x
y:� = hbx

y:� ; dx
y:� ; ux

y:� ; ax
y:� i

wherebx
y:� + dx

y:� + ux
y:� = 1, and bx

y:� ; dx
y:� ; ux

y:� ; ax
y:� 2 [0; 1]: (5)

In the above representation,bx
y:� ; dx

y:� ; ux
y:� ; ax

y:� represent the degrees of be-
lief, disbelief, uncertainty, and the base rate (a priori probability in the absence
of evidence) respectively. Opinions are formed on the basis of positive and nega-
tive evidence. The variablesr x

y:� and sx
y:� , represent the number of positive and

negative past observations ofx about y respectively, and can be used byx to
obtain an opinion about y as follows:

bx
y:� =

r x
y:�

r x
y:� + sx

y:� + 2
; dx

y:� =
sx

y:�

r x
y:� + sx

y:� + 2
; bx

y:� =
2

r x
y:� + sx

y:� + 2
(6)

An opinion's probability expectation value computed using Equation 6, can be
used by x as a measure ofy's trustworthiness with respect to � .

� x
y:� = bx

y:� + ax
y:� � ux

y:� =
r x

y:� + ax
y:� + 2

r x
y:� + sx

y:� + 2
(7)

The base rate parameterax
y:� , also known as the relative atomicity, represents

a priori degree of trustx has about y giving accurate report about � before any
evidence has been received. The parameter determines how uncertainty shall
contribute to the computed expectation value. The default value ofax

y:� is 0:5 [2],
which means that before any positive or negative evidence has been received,
both outcomes are considered equally likely.

The trust value for a group Gi is based on past interactions with members
of the group, and computed as a function of the trust of the individual members
encountered from the group.

� x
G i :� =

X

y2 G i

� x
y:�

jGi j
: (8)
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6 Reputation-based Trust Evaluations through Diversity

2.3 Learning Diversity

We de�ne Diversity as a function � : 2 A ! G that maps the feature set and
past reports (behaviour) of agents to a set of groups. We take as a working as-
sumption, that there may be some correlation between the features of an agent
and its behaviour. Where this exists, we could exploit information from observ-
able features of agents, as well as evidence from their past behaviour to build
a model of diversity. Diversity learning may be carried out in two stages: the
�rst stage involves an attempt at disambiguating what metrics lead to a better
strati�cation of the population of agents. The best metric in our estimation is
one that produces the highest feature-behaviour correlation, such that the prob-
ability of agents in the same group giving similar reports is maximized. We refer
to this correlation as group behaviour. In the second stage, the learned metric
is employed to partition agents into semi-homogenous subgroups. We focus here
on the process of group formation by assuming a learned metric.1 We employ a
clustering mechanism that incorporates a feature thresholdfT , and a behaviour
threshold bT in order to control the formation of clusters. There are various
clustering techniques that can be used for this purpose. In this work, we employ
the hierarchical clustering [7] as an algorithm of choice because it is well-known,
and allows us to cluster into a set of groups the cardinality of which we do not
know in advance. The clustering process is illustrated in Algorithm 1.

In the �rst stage of the clustering, each agent is regarded as belonging to
a separate cluster, and the two clusters with the shortest 2-norm (Euclidean)
normalised feature distance are then merged to form a new cluster. In the second
stage, the merging of clusters continues as in the �rst stage, until either all the
agents are assigned to a single cluster, or the� x

GF
i

of a potential group exceeds the
feature threshold fT . At each stage of clustering, the expected behaviour� x

GB
i

,
of a potential group, is validated against the bT threshold based on available
evidence, to ensure the behaviour threshold is not exceeded.

Our clustering approach has some interesting characteristics. It imposes re-
striction on group membership for outlier agents. An outlier agent has features
matching that of a particular group, but with a non-conforming behaviour to the
group. Our model regards such agents as belonging to singleton groups pending
evidence suggesting otherwise. In line with this, unknown agents start o� in sin-
gleton groups even though their features may be matched to any of the existing
groups, until there is su�cient evidence supporting their group membership.

2.4 Sampling and Evidence Aggregation

The DM model o�ers rich context from which an aggregation set may be derived.
In the general case, an aggregation set is made of candidates randomly selected
from di�erent groups, from which evidence may be drawn in order to form an
opinion. However, depending on the speci�c requirements of a task, richer con-
texts could be explored using the learned model of diversity. For instance, the
cost and risk assessments of a potential transaction [4], may serve to inform the

1 Relaxing this assumption is left to a future work.
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Reputation-based Trust Evaluations through Diversity 7

Algorithm 1 Hierarchical clustering algorithm for group formation using feature and
behaviour criteria.
Require: A set of agents A
Require: A feature and behaviour based similarity thresholds, fT ,bT
Require: A feature and behaviour similarity functions, � G F ,� G B

1: allocate each agent in A as a single cluster
2: let C be the set of clusters
3: continue ( true
4: while continue do
5: continue ( false
6: for all X; Y 2 C do
7: compute the between-cluster similarity � G F

( X;Y )
, such that � G B

( X;Y )
< bT

8: end for
9: if fT < � G F

( X;Y )
then

10: Z ( X [ Y , where � G F
( X;Y )

is the minimum

11: remove X and Y from C
12: C ( C [ Z
13: continue ( true
14: end if
15: end while
16: return C

sampling process. Members in a group comprising of trustworthy agents may
be favoured, for example, over agents in less trustworthy groups in a high-risk
transaction. Also, in situations where the cost associated with sampling from
speci�c groups of agents (e.g. groups of experts) exceeds a budget, groups of less
knowledgeable agents may be considered, who in combination may provide a suf-
�ciently similar service. We consider the random selection of one representative
candidate from each of the groups to form an aggregation set. Provided the like-
lihood of agents in each of the groups behaving in a similar manner is relatively
high, then evidence from the set may be considered a su�cient representation
of the entire population. We do not suggest this to be the only approach for
sampling, but only that it demonstrates one possible realisation of our model,
which we have used in our evaluation. Other sophisticated sampling techniques
may be explored to meet speci�c requirements.

We denote by S the aggregation set comprising of candidates sampled from
groups in G. Gi;last is the number of agents inGi . Further, we de�ne Gi (l ) as the
index of the lth element in Gi , for l = 1 ; :::; last . A candidate y 2 Gi is selected
to be added to S, by choosing a random integerz 2 [1; last ].

The DM model does not limit the chances of unknown agents being sampled
by simply assigning them to an existing group having members with similar fea-
tures. Every unknown agent, as already mentioned is regarded as belonging to
its individual group, until there is su�cient evidence to classify it di�erently.
This approach prevents a stereotypical treatment for such agents with regards
to group membership, but gives each agent in this category a fair chance of be-
ing heard. There are bene�ts to this: in the �rst instance, a benevolent agent
sharing similar features with a group of malicious agents will not be automat-
ically labelled malicious, when there is no concrete evidence suggesting such.
Also, a group of benevolent agents will not risk the abuse of its reputation by
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8 Reputation-based Trust Evaluations through Diversity

malevolent agents who, for example, may bemasqueradingby presenting similar
features [6].

An evaluator x, combines reports from agents in the aggregation setS � A,
in order to arrive at an opinion about � . Every agent s, in the aggregation set,
has its report weighted by the subjective trust value � , assigned its groupGi (s)
by x. We use ana priori trust for unknown agents which is often set at 0.5 in
literature [2]. The combined evidence is computed as:

E x
� =

X

s2 S

R y;� � � x
G i ( s ) :�

X

s2 S

� x
G i ( s ) :�

: (9)

3 Evaluation

In this section we describe experiments conducted to evaluate (in simulation)
the performance of the Diversity Model. The aim of the experiments is to study
the e�ect of group behaviour and deception on an aggregation result, and how
these mechanisms may be exploited to limit the number of agents queried for
evidence. We describe the methods adopted in the experiments, and present our
results and discussion. The factors taken into account in the evaluation are: the
predictive accuracy of the model to some ground truth, and the proportion of
agents in the population sampled for evidence. We compare our approach to
other approaches such as sampling the entire population of agents, randomly
sampling a number of agents, and sampling based on the trustworthiness of the
agents (in this instance we compare the performance of our model to the trust
computation engine used in Beta Reputation System [5]).

3.1 Experimental Setup

Our experiments are based on a simulation testbed which models a logical net-
work of agents as de�ned by their features. The environment consists of 100
sources and one evaluator. The evaluator relies on evidence obtained from the
sources to evaluate a subject of interest. Our network is connected, withundi-
rected edges from each node to its neighbours. The network �tness is based on
the distance between features of agents, such that nodes that are highly sim-
ilar gravitate towards each other. For simplicity, we assume that similarity is
de�ned on the same feature dimension for all agents. Agents possess incomplete
knowledge, and therefore, report with some amount of uncertainty. We simulate
this phenomenon by drawing each agent's report from a Gaussian distribution
N(0; 1). However, agents closer to each other report in a similar manner. To sim-
ulate this we have each agent broadcast its report at each sampling phase to all
its one-hop neighbours. Each node maintains a bu�er of reports received from its
neighbours. At each sampling phase, a node reports following N(0; 1). However,
if there are corresponding reports in a node's bu�er for the same sampling phase,
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Reputation-based Trust Evaluations through Diversity 9

a node alters its report to re
ect a conformity to reports of its neighbours, with
only a slight deviation. In this way, we de�ne the underlying logical network
we wish our evaluator to identify and exploit. The experimental parameters are
listed in Table 1.

Table 1. Experimental Parameters

Parameter Value Parameter Value

#Information sources 100 # evaluators 1
feature threshold ( fT ) 0.8 behaviour threshold ( bT ) 0.9

degree of nodes 8 report distribution N(0 ; 1)

3.2 Experiments and Results

We consider di�erent experimental conditions to analyse the e�ects of group be-
haviour and malicious agents on the aggregation result. We indicate the number
of agents used by our model in each case to arrive at a decision. Each evalua-
tion condition was initialised with random models of the information sources.
100 runs were conducted in 10 rounds for each case and the mean of the runs
reported.

E�ect of Group Behaviour In this experiment, we analyse the e�ect of the
increasing rate of group behaviour in the population in the predictive accuracy of
the evaluator agent. In real world scenario, subgroups may arise, for instance, as
a result of agents having similar expertise, being constrained by organisational
policies, or by a coordinated act of collusion by di�erent agents. This may be
regarded as a kind of deception, since agents exhibiting some of these traits may
not be reporting their perception objectively. We linearly increase the percentage
of conformity to group behaviour from 0% to 100%. In each case, agents that
conform to group behaviour are selected randomly from the population. Figure 2
shows the e�ect of group behaviour on the aggregated result. The deviation from
the ground truth is reported in each case. Although each agent reported with
some uncertainty, given incomplete knowledge on a subject the evaluator took
advantage of the large number of agents queried, and was able to make better
predictions because the noise in the aggregated reports cancelled out, leaving
only reliable reports. However, when the rate of group behaviour increased, as
expected, the reports also became skewed in favour of opinions held by di�erent
subgroups, leading to lower accuracy in predictions. An evaluator in such cir-
cumstance may no longer bene�t from sampling large number of agents, as each
new report may only be a repetition of an already sampled opinion.

In Figure 2, the performance of the DM model is compared against other
approaches. The metric we are speci�cally interested in is the performance of
our Diversity Model compared to other approaches. We considered an approach
based on sampling all agents in the population, which we refer to as thebase-
line. Also considered are models based on the trustworthiness of agents, and
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10 Reputation-based Trust Evaluations through Diversity

the random selection of agents. The same number of agents as that sampled
by the DM model was employed to select agents when using the trust model
and the random selection respectively. The trust model involved sampling the
most trustworthy agents in the population. Our �rst observation is that all the
models begin very well when there were no group behaviour (at 0%). The pre-
dictions made were closer to the ground truth, with the baseline model slightly
outperforming the other approaches. Also nearly as many agents as the baseline
approach were queried by the DM model. This may be regarded as the worst
case, where no compelling evidence could be established for the formation of
informative groups. However, when evidence of group behaviour in the agent
population emerged, our model was able to exploit this to reduce the number
of agents queried, while still making better predictions. The performance of the
trust model was worse o�, undoubtedly caused by the uncertainty in the reports
of the agents in each sampling phase. Speci�cally, when there were no expert or
malicious agents in the system, the trust model was unable to learn any useful
pattern in the reliability of agents, and therefore consistently made poor choices.
The approach based on random selection of sources is an uninformed selection
strategy, which leans much on chance. This, as observed is likely to perform
poorly in environments where there are de�ned patterns of behaviour among
agents. This observation is encouraging, as it demonstrates the e�cacy of the
DM model in guiding decision making rather than relying on chance.

Fig. 2. E�ect of group behaviour in aggregated result

E�ect of Malicious Sources Until now, we have discussed the scenario in
which agents reported objectively based on incomplete knowledge. However, in
real life settings, agents may not always behave benignly. There may be incentives
for agents to lie, leading to distorted reports aimed at subverting the system. In
this section we consider an attempt by malicious agents to systematically distort
the aggregation result, by reporting a value di�erent from their observation.
Our goal was to determine robustness of our model with varying degrees of
deception. As before, we compare the performance of the Diversity Model against
the baseline approach, random selection, and trust �ltering. The baseline, as in
previous case, involved sampling all the agents in the population.

22



Reputation-based Trust Evaluations through Diversity 11

Fig. 3. E�ect of malicious sources with 20%
group behaviour

Fig. 4. E�ect of malicious sources with 80%
group behaviour

In the experiment, malicious agents report with a distribution that is di�erent
from normal agents. Deceptive reports were drawn from a Gaussian distribution
N(2; 0:01), with an attempt at distorting the aggregation result. However normal
agents continued to report according to N(0; 1). We gradually increased the
percentage of deception in the system from 0 to 100, and observed the e�ect
when group behaviour was kept constant at 20% and 80%, respectively. In each
case, performance of the four approaches was considered, and the number of
agents queried at each instance was also recorded. The number of agents queried
by the diversity model in each case is captured in the result against the diversity
sampling curve, as shown in Figure 3 and Figure 4.

An interesting observation, given this set of experiments is the notable im-
provement in the predictive accuracy of the trust model. Although still out-
performed by the Diversity Model, the trust approach performed signi�cantly
better than the the baseline and random approaches. The trust model, in this
instance, was able to learn from its experience when the activity of malicious
agents became obvious and stable in the system. The e�ect of deception is all
the more highlighted and ampli�ed in the system when considered in parallel
with group behaviour. An analogy of this could be drawn to agents in a social
network, where agents may be in
uenced based on the kind of social group they
belong to, or who they listen to. This kind of phenomenon is referred to as ru-
mour spreading in the literature [10]. As observed, the DM model could still
make better predictions because it was able to adjust the weights for di�erent
types of sources.

4 Conclusion and Future Work

We have presented a framework for selecting sources of reputational evidence, in
a way that guarantees reliable decisions from small groups of individuals. The
approach presented in this work is oriented towards resource-constrained envi-
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12 Reputation-based Trust Evaluations through Diversity

ronments where querying of information sources is costly. However, the proposed
approach could also be extended to other environments to facilitate selection of
interaction partners, and to guard against deception, especially the more coor-
dinated attempts of collusion. Where hidden networks de�ning group behaviour
exist in the population, our model is able to exploit this in order to limit the
number of information sources sampled while still remaining robust to decep-
tion. Where a na•�ve approach of evidence aggregation would perform poorly
under these conditions, our model shows positive results that outperforms clas-
sical trust approach.

This work exploits features and perceived behaviour of agents in order to
cluster them into groups. We intend to exploit richer information contexts such
as domain ontology and provenance in future research in order to form better
clusters. For simplicity, this work assumes that malicious agents behave in a con-
sistent manner. We hope to incorporate more complex deception models in order
to evaluate robustness of our model in other scenarios. Although we considered
a very simple sampling mechanism for the selection of information sources, we
intend to incorporate richer sampling techniques, aimed at satisfying di�erent
information needs of an application.

Acknowledgements. This research was supported by the Petroleum Technol-
ogy Development Fund (PTDF) Nigeria, Overseas Scholarship Scheme (OSS).
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Abstract. Current reputation systems simply aggregate numerical ratings pro-
vided by buyers, but overlook the buyers' subjectivity difference in evaluating
the transactions with a seller. To address this problem, we propose a subjectiv-
ity alignment approach for reputation computation (SARC). It �rst requires the
buyers to provide ratings and detailed reviews containing values of objective at-
tributes of the transactions. After that, SARC applies Bayesian learning to model
the correlations between each rating level and each objective attribute, and adopts
a regression analysis model to learn the weights of the attributes, representing
each buyer's subjectivity. Ratings provided by one buyer can then be aligned
(converted) for another buyer according to the two buyers' subjectivity. Evalua-
tion results indicate that SARC can more accurately and stably model sellers' rep-
utation than the BLADE and TRAVOS approaches. It is also not much affected
by deception from dishonest buyers, and more robust to dynamic environments.

Categories: I.2.11 [Distributed Arti�cial Intelligence ]: Intelligent agents;
K.4.4 [Electronic Commerce]: Trust, Reputation

General Terms: Algorithms; Design

Keywords: subjectivity alignment, bayesian learning, reputation system, multi-
agent system

1 Introduction

In open e-marketplaces, it is not possible for a buyer to have experience with every
seller. On the other hand, dishonest sellers may advertise perfect deals but never de-
liver the promise. Therefore, there is a signi�cant risk for buyers when selecting a seller
among many alternatives. To address the issue, reputation systems [7] have been pro-
posed, where buyers who previously bought products from a seller share their experi-
ence, normally in the form of a numerical rating re�ecting the level of satisfaction about
the transactions with the seller. These ratings are aggregated to represent the seller's rep-
utation. Other buyers can then rely on the reputation values of sellers to make decisions
on which sellers to do business with.

A rating is a subjective evaluation of a seller by a buyer within the context of a spe-
ci�c transaction. Therefore, different ratings could be given for the same transaction by
different buyers. Subjectivity difference may come from two sources. First, when the
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buyer evaluates her satisfaction level with a transaction, she considers each attribute re-
lated to that transaction. Although the information about each attribute isobjective, the
evaluation (i.e., satisfactory level) of the attribute value may be subjective and change
from user to user. This is referred to asintra-attribute subjectivityin this paper. For ex-
ample, a product with the price of “USD1500” may beexpensivefor buyera, while not
so expensivefor buyerb. Second, when the buyer assigns a satisfaction level to a trans-
action, she may consider some attributes of the transaction more heavily than others.
This is referred to asextra-attribute subjectivity. For example, a buyer with better eco-
nomic conditions may consider a product'squality more heavily, while another buyer
with worse economic conditions may concern more about thepriceof the product. The
above two aspects together contribute to the subjectivity difference among buyers. Due
to the subjectivity difference, it may not be effective if a buyer directly aggregates other
buyers' ratings to compute seller reputation. The computed reputation values may then
mislead the buyer in selecting business partners.

To effectively address the subjectivity difference problem, we propose a subjec-
tivity alignment approach for reputation computation (SARC). In our approach, each
buyer is equipped with an intelligent (buying) agent. At the beginning of her interac-
tions with the reputation system, a buyera is required to provide her buying agent with
both a single rating and a detailed review containing values of the objective attributes
of transactions with sellers, such asprice anddelivery time, for each of a few transac-
tions. Based on these rating-review pairs, the buying agent applies a proposed Bayesian
learning approach to model the correlations between buyera's each rating level and
the value of each objective attribute involved in the transactions. The learned correla-
tion function, which represents buyera's intra-attribute subjectivity, will then be shared
with the agents of other buyers. The agent of buyera also applies a regression analysis
model to learn the weight of each attribute for buyera, representing herextra-attribute
subjectivity. This information will not be shared with other buyers. After the learning
phase, buyera only needs to provide ratings for her transactions with sellers, not de-
tailed reviews.

When another buyerbshares a new rating of her transaction with a seller, the agent
of buyera will �rst retrieve a rating level for each attribute of the transaction based
on the shared rating and theintra-attribute subjectivityof buyerb shared by the agent
of b. The rating levels of the attributes will then be aggregated according to buyera's
extra-attribute subjectivitylearned by the agent ofa. In this way, the rating shared by
buyerb is aligned to that can be used by buyera for computing the reputation of the
seller.

To evaluate the performance of our SARC approach, we simulate an e-commerce
environment involving a number of buyers with different subjectivity in evaluating
products and a set of sellers selling products with different attribute values. In addi-
tion, buyers' subjectivity may change over time, buyers may also intentionally lie about
their evaluation of products, and sellers may change the attribute values of their prod-
ucts. Experimental results con�rm that our SARC approach provides suf�ciently good
performance in a general setting. It can more accurately and stably model sellers' rep-
utation than the representative competing approaches of BLADE [6] and TRAVOS [8].
Our approach is not dramatically affected by deceptive buyers because it treats dis-
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honest buyers as the ones with different subjectivity. It is also more robust to dynamic
environments.

2 Related Work

Quite a lot of �ltering approaches have been proposed to address the problem of sub-
jectivity difference among buyers and unfair ratings intentionally provided by dishonest
buyers to mislead other buyers. For example, some of the approaches �lter out the rat-
ings of some buyers (advisors) whose past ratings differ signi�cantly from the ratings of
all advisors [9, 1], the ratings of a particular buyer [8, 10, 5], or the ratings of both [11].
These �ltering approaches generally suffer from the risk of losing or discounting some
important information. In contrast, our approach aligns/converts the ratings of the ad-
visor to those that can be directly used by buyers according to the subjectivity of the
buyers and the advisor learned by their agents.

Some other alignment approaches have also been proposed to align advisors' advice
about the trustworthiness of sellers. For example, Koster et al. [3] propose a trust align-
ment approach based on the general framework of Channel Theory. In this approach,
each agent computes its own user's trust evaluation patterns based on the interactions to-
wards the same sellers (i.e., shared interactions). Then, the generalized patterns are used
to align trust advice provided by advisors. The BLADE approach of Regan et al. [6] ap-
plies Bayesian learning to model sellers' properties and the correlations between sellers'
properties and buyers' ratings. Once a buyer receives a rating from an advisor, she can
infer back the target seller's properties, and then compute the rating of her own towards
the seller on the basis of the inferred properties of the target seller. One shortcoming of
these alignment approaches is that they ignore the intra-attribute subjectivity difference
among buyers. Another shortcoming is that they require the buyer and the advisor to
have shared interactions, which may not be the case in an e-commerce environment
with a large population of sellers. In addition, these approaches generally offer limited
�exibility for buyers to deal with the dynamic behavior of sellers and dynamic subjec-
tivity of advisors. In contrast, our SARC approach aligns each rating provided by an
advisor towards a transaction with a seller other than an aggregated trust value of the
seller. In this way, it is not affected by sellers' changing behavior. Our SARC approach
updates the learned subjectivity of buyers (advisors) in certain interval of time to cope
with the possible dynamic subjectivity of advisors. Our SARC approach does not rely
on shared interactions. Instead, the agent of each buyer makes use of the ratings and
detailed reviews provided by the buyer about her transactions with any sellers, to learn
the buyer's intra-attribute and extra-attribute subjectivity.

Collaborative �ltering [4] and matrix factorization [2] have been proposed to ad-
dress the subjectivity difference problem in the domain of recommender systems. How-
ever, recommender and reputation systems are different in the sense that reputation sys-
tems concern about sellers who may change behavior over time whereas recommender
systems concentrate on static products. In addition, in reputation systems, a buyer may
have several ratings towards one seller whereas a user has only one rating for one prod-
uct in recommender systems.
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3 The SARC Approach

In an e-marketplace, we denote the set of buyers byB = f b1; b2; b3; : : :g. The set
of agents (called buying agents) equipped by corresponding buyers is denoted byA =
f a1; a2; a3; : : :g, and the set of sellers are referred to asS = f s1; s2; s3; : : :g. The set of
objective attributes for describing a transaction between a buyer and a seller is denoted
asF = f f 1; f 2; : : : ; f m g, wherem represents the total number of objective attributes.
Each rating provided by a buyer for a seller is from a set of prede�ned discrete rating
levelsL = f r 1; r 2; : : : ; r n g, wheren is the total number of different rating levels (i.e.,
the granularity of rating scale).

For a buyerbi 2 B, the goal of her buying agentai 2 A is to accurately compute
the reputation value of a target sellersj 2 S, according tobi 's subjectivity. In order
to achieve this goal, the buying agentai needs to consider the ratings of other buyers
(advisors) that evaluate the satisfaction levels about their past transactions with seller
sj . Due to the possible subjectivity difference between buyerbi and the advisors, agent
ai also needs to align/convert ratings of each advisor (for examplebk ) using our SARC
approach.

More speci�cally, at the beginning of buyerbi 's interactions with the system, agent
ai asksbi to provide a rating for each of her transactions with a seller (which can be any
seller inS). Buying agentai also asksbi to provide detailed review information about
each transaction containing the values of the set of objective attributes inF . Based
on the provided information (rating-review pairs), agentai models a set of correla-
tion evaluation functions (CEFs) for buyerbi , capturingbi 's intra-attribute subjectivity.
Each correlation evaluation function is represented by aBayesian conditional proba-
bility density functionthat models the correlation between each rating level and each
objective attribute. Thus, for each buyer, the total number of the correlation evaluation
functions is equal tom � n.

The learned CEFs of buyers will be shared with each other buyer's agent. For a
rating provided by the buyer (advisor)bk , agentai can then derive a rating for each
attribute, based on the CEFs shared bybk 's agentak and those of buyerbi 's own. Note
that what is derived for an attribute is in fact a set of probability values, each of which
corresponds to a rating level inL . The rating level with the highest probability will be
chosen as the rating for the attribute.

Based on the provided rating-review pairs bybi , agentai also learns theextra-
attribute subjectivityof buyerbi , which is represented by a set of weights for corre-
sponding attributes inF . The weight of an attribute is determined by two factors: 1)
the probability value of the rating derived earlier; and 2) the importance of the attribute
learned using a regression analysis model. These weights will not be shared with other
buyers. Once the weights are learned, the aligned rating from that of advisorbk can be
computed as the weighted average of the derived ratings for the attributes.

In the next sections, we will describe in great details how SARC models CEFs
based on rating-review pairs, derives a rating for each attribute, learns the weights for
attributes, and computes a (aligned) rating by aggregating the derived ratings for at-
tributes, organized as intra-attribute subjectivity alignment and extra-attribute subjec-
tivity alignment.
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Fig. 1.A Nä�ve Bayesian Network for Agentai of Buyerbi to Align Buyerbk 's Ratingr bk

3.1 Intra-attribute Subjectivity Alignment

Given a set of rating-review pairs provided by buyerbi , each of which is for a transac-
tion betweenbi and a seller, the rating in a pair indicatesbi 's satisfaction level about the
corresponding transaction, and the review in the pair is a set of values for the attributes
F of the transaction. Buyerbi 's agentai learns the correlation evaluation functions
(CEFs) ofbi , each of which is represented by a Bayesian conditional probability den-
sity function. Each CEF is the correlation between a rating level and the values of an
attribute. More speci�cally, let us learn CEFbi

u;v , the correlation function between at-
tributef u and rating levelr v for buyerbi , where1 � u � m and1 � v � n. Buying
agentai �rst learnspbi (r v ) (the probability that buyerbi provides a ratingr v ), pbi (f u )
(the probability distribution of the values for attributef u ), andpbi (r v j f u ) (the condi-
tional probability of rating levelr v given the distribution of the values for attributef u ).
By applying the Bayes' Rule, agentai can derive CEFbi

u;v as the conditional probability
distribution of the values for attributef u given rating levelr v as follows:

CEFbi
u;v = pbi (f u j r v ) =

pbi (r v j f u ) � pbi (f u )
pbi (r v )

(1)

In our approach, the agents of buyers share the learned CEFs for their buyers with the
agents of other buyers. Suppose that the agentak of a buyerbk shares the learned CEFbk

for bk with the agentai of buyerbi . For a ratingr bk shared by buyerbk , agentai can
then derive a rating level for each attribute inF . We use a Nä�ve Bayesian Network
model to learn the mapping/alignment fromr bk of buyerbk to the ratings ofbi for the
attributes, as illustrated in Figure 1. Although in this model we assume that the attributes
are independent given the ratings of buyers, in the next section, we will learn the relative
weights of the attributes to capture the dependency among the attributes.

Let us take anyf u 2 F as an example attribute to show how agentai derives a
rating for attributef u . To do so, agentai �rst estimates the conditional probability of a
rating level inL for attributef u , given ratingr bk provided by buyerbk . Take any rating
level r v as an example, agentai computespbi (r v;f u jr bk ), the conditional probability
that buyerbi will assign the rating levelr v;f u to attributef u given the ratingr bk of
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buyerbk , as follows:

pbi (r v;f u jr bk ) =
pbi (r v j f u ; r bk ) � pbk (f u j r bk )

pbi (f u j r v ; r bk )

=
pbi (r v j f u ) � pbk (f u j r bk )

pbi (f u j r v )
(2)

wherepbk (f u j r bk ) is learned by agentak of buyerbk using Equation 1 and shared
by agentak to agentai , pbi (f u j r v ) is learned byai itself using Equation 1, and
pbi (r v j f u ) is obtained by agentai from the rating-review pairs provided by its buyer
bi . In Equation 2,pbi (r v j f u ; r bk ) is equivalent topbi (r v j f u ) andpbi (f u j r v ; r bk )
is equivalent topbi (f u j r v ) because buyerbi provides ratings to corresponding at-
tributes regardless of buyerbk 's ratings. In other words, buyers evaluate transactions
independently.

For attributef u , agentai learns the conditional probability of each rating levelr v 2
L according to Equation 2. The aligned rating of attributef u for buyerbi on the basis
of buyerbk 's rating is then determined as the rating level with the highest probability
value, as follows:

r bi
u;k = argmax

r v 2L
(pbi (r v;f u jr bk )) (3)

The aligned ratings for other attributes inF can also be determined in the same way
according to Equations 2 and 3.

3.2 Extra-attribute Subjectivity Alignment

After the ratings of the attributes are obtained, agentai of buyerbi then aggregates the
ratings to represent an aligned rating of the ratingr bk shared by buyerbk . To do this,ai

needs to �rst determine a weight for each attribute inF as buyerbi may concern more
about one attribute over another.

The weight of an attributef u is determined by two factors. One factor is the con-
�dence Cu about the ratingr bi

u;k derived for the attributef u using Equations 2 and 3.
The con�dence can be represented as the conditional probability value of the derived
rating,pbi (r bi

u;k jr bk ) estimated using Equation 2. A larger probability value means that

it is more probable that the derived rating for attributef u should ber bi
u;k according to

buyerbk 's rating and the subjectivity of buyersbi andbk . In another word, the larger
the probability is, the more reliable the derived ratingr bi

u;k is. Thus, we have:

Cu = pbi (r bi
u;k jr bk ) (4)

Another factor to determine the weight for attributef u is the importanceI u of f u

in buyerbi 's view. The importanceI u can be modeled as the coef�cient of attributef u

by a regression analysis model, based on the rating-review pairs provided bybi . More
speci�cally, given the rating-review pairs, we compute the coef�cients for attributes by
minimizing the aggregated difference between the true ratings in the rating-review pairs
of bi and the ratings, each of which is predicted for a review by the following equation:

r bi
0 = I 0 +

X
m
u=1 I u � Vf u + " (5)
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wherer bi
0 is the predicted rating for a review,Vf u is the value off u in the review,I 0 is

a constant, and" is residual. So, the coef�cientsI = [ I 0; I 1; : : : ; I m ] can be computed
by:

I 0 = ( X
0
X ) � 1X

0
Y (6)

where if there arec rating-review pairs for buyerbi in total,

X =

2

6
6
6
4

1 f 11 : : : f m 1

1 f 12 : : : f m 2
...

...
...

...
1 f 1c : : : f mc

3

7
7
7
5

; Y =

2

6
6
6
4

r 1

r 2
...

r c

3

7
7
7
5

After the weight (con�dence and importance) of each attribute is determined, the
aligned ratingr bi

k can be computed as the weighted average of the ratings for attributes
derived using Equations 2 and 3, as follows:

r bi
k =

P m
u=1 r bi

u;k � Cu � I u
P m

u=1 Cu � I u
(7)

After aligning all ratings shared by all buyers (advisors), the reputation value of
sellersj in the view ofbi can be computed as, for example, the average of the aligned
ratings.

4 Experimentation

In this section, we carry out experiments to evaluate the performance of our SARC ap-
proach and compare it with some representative competing approaches. We simulate an
e-commerce environment involving 50 sellers and 200 buyers. In our simulations, sell-
ers may provide different products. Their products are all different PC con�gurations
with �ve objective attributes, namely,Price, Speed of CPU, Processor Type, Graphics
Card Type, andHard Drive Sizewith ranges presented in Table 1. For each seller, the
values of the �ve attributes of her products are randomly chosen within the ranges.

Buyers may have different subjectivity in evaluating their transactions with (the
products of) sellers. We simulate both buyers' intra-attribute subjectivity and extra-
attribute subjectivity. To be speci�c, we assume that a buyer's rating for a transaction
with a seller is derived as follows. First, the buyer evaluates each objective attribute ac-
cording to a speci�c intrinsic (taste) function. In our experiments, buyers' intra-attribute
subjectivity is simulated as an approximateGaussian Distribution. That is, for each at-
tribute, the probability of each rating level given by a buyer is in the form of a normal
distribution. Second, the buyer places random weights (in the domain of [0,1]) on dif-
ferent attributes, and computes the weighted average of her evaluations on attributes as
a single rating for the transaction. Since buyers can only give ratings under the prede-
�ned rating scale in reality, the simulated rating is chosen from the prede�ned rating
scale that is the closest to the weighted average.

In the experiments, we also implement a baseline approach without subjectivity
alignment, which computes seller reputation by directly averaging the ratings collected
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Table 1.Product Attributes and Value Ranges

Dimension Type Ranges
P rice Double$100-$10,000

Speed of CP U Double 1-10 GHZ
P rocessor T ype Char 5 types

Graphics Card T ype Char 2 types
Hard Drive Size Integer 40-1000GB

from other buyers. We choose to implement TRAVOS [8], a representative �ltering
approach (see the Related Work section for details). BLADE [6] is chosen instead of
the approach of Koster et al. [3] because they are very similar and the approach of
Koster et al. is complicated to implement.

We compare the performance of these approaches with our approach in reputation
computation. The performance of an approach is measured as the mean absolute error
(MAE) between seller reputation computed for each buyer using the approach, and that
using the ratings according to each buyer's own subjectivity (representing the ground
truth about seller reputation with respect to the buyer).

To simulate real-world e-commerce environments, we set several important parame-
ters for our simulations, including information availability, dynamic behavior of sellers,
dynamic subjectivity of buyers, ratio of liars (dishonest buyers), and granularity of rat-
ing scale.

Information availabilityrefers to the amount of available information required by
different approaches for subjectivity alignment. Two types of information are needed by
our approach. One is the detailed reviews describing the objective attributes of transac-
tions between buyers and sellers. This information is used by our approach to model the
correlation evaluation functions (CEFs) and the importance of the attributes for buyers.
We vary thenumber of detailed reviews(N r ) to see how the performance of our ap-
proach is affected by this parameter. Another type of information contributing to our
approach is the number of objective attributes. In reality, some attributes (e.g. appear-
ance) may not be objective. The total number of objective attributes in our simulations
may thus be less than 5. We vary theratio of objective attributes(Robj ) to be0%, 20%,
40%, 60%, 80%and100%, to see how much the performance of our approach will be
affected. One type of information required by the BLADE approach is shared interac-
tions where buyers and advisors have interacted with some same sellers. We vary the
ratio of shared interactions(Ri ) to see how this parameter affects the performance of
BLADE.

We also set the parameterPseller to capture thedynamic behavior of sellers. In
real-world e-commerce environments, sellers may change their behavior over time. For
example, they may provide products of high quality at �rst, but those of low quality
after earning enough reputation. In our experiments, dynamic behavior of sellers is
simulated by changing the quality of their products (i.e. the values of a subset of the
objective attributes in Table 1).

32



A Subjectivity Alignment Approach for Effective Reputation Computation 9

(a) (b)

(c) (d)
Fig. 2. (a) Performance Comparison in the Basic Environment; (b) Performance When Varying
Ratio of Objective Attributes; (c) Performance When Varying Granularity of Rating Scale; (d)
Performance When Varying Number of Detailed Reviews

Buyers may also adjust their subjectivity over time. Dynamic subjectivity of buyers
(Pbuyer ) is captured in their rating procedure by adjustingintra-attribute subjectivity,
or extra-attribute subjectivity, or both.

Ratio of liars(Rliar ) is adopted to re�ect the deception problem in real e-marketplaces
where some buyers may lie about their experience with sellers. Following the work
of [10, 9, 8], we also simulate the complementary lying behavior where if a true rating
to a seller isr in the scale of[0; 1], the liar will modify the rating as1 � r .

Granularity of rating scale(Gscale ) refers to the number of rating levels. It may be
different for different reputation systems. In our experiments, we will study the effect
of the granularity of rating scale by varyingGscale from 2 to 10.

We vary the values of the above parameters to simulate basic, deceptive and dy-
namic environments, respectively.

Basic Environment We �rst simulate a basic environment without any variation of the
parameters (i.e., Rliar = 0 , Pseller = 0 , Pbuyer = 0 ), and compare the performance
of our approach and that of the three competing approaches, including the baseline ap-
proach, TRAVOS and BLADE. We compute their mean absolute error (MAE) values
for computing the reputation of sellers in different epoches. In each epoch, each buyer

33



10 Hui Fang, Jie Zhang, Murat Sensoyy , and Nadia Magnenat Thalmann

(a) (b)

(c) (d)
Fig. 3.(a) Performance When Varying Ratio of Shared Interactions; (b) Performance When Vary-
ing Ratio of Lying Buyers; (c) Performance for Sellers' Changing Behavior; (d) Performance for
Buyers' Changing Subjectivity

interacts with one seller in the marketplace. From the results shown in Figure 2(a),
we can see that our approach performs consistently the best no matter whether buyers
have more or less experience with sellers. Because both TRAVOS and BLADE require
shared interactions, their performance is limited. Both TRAVOS and BLADE perform
slightly better than the baseline approach. The performance difference between the dif-
ferent approaches is reduced when buyers have more experience with sellers in the
marketplace.

Based on the basic environment, we then vary some parameters to examine their
effects. We �rst examine how the ratio of objective attributesRobj affects our SARC
approach. We varyRobj from 0% to 100%for our SARC approach, while keepRobj

to be 100% for BLADE. As shown in Figure 2(b), SARC performs slightly worse
than BLADE when there are no objective attributes. However, it performs better than
BLADE when there are more than20% of objective attributes. The performance of
SARC consistently increases as the ratio of objective attributes increases. But, the in-
crement becomes smaller whenRobj � 20%.

The larger the granularity of the rating scale (Gscale ) is, the easier to learn buyers'
subjectivity because buyers' subjectivity can be better captured by the larger granu-
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larity of the rating scale. This trend is veri�ed by our experiment. In Figure 2(c), we
plot the MAE results of the four approaches when varyingGscale from 2 to 10. The
�gure shows that the performance of SARC is signi�cantly greater than the baseline
approach, TRAVOS and BLADE. On average, the performance of SARC improves as
Gscale increases.

We also vary the number of detailed reviews (N r ) provided by buyers from1 to
30. We try to �gure out a reasonableN r for SARC. As shown in Figure 2(d), when
N r increases from1 to 5, the performance of SARC increases signi�cantly. WhileN r

is larger than5, as the increase ofN r , the performance of SARC also increases, but
in a much smaller degree. This is simply because SARC requires only a few detailed
reviews to learn buyers' subjectivity well. After that, any additional information leads
to only small improvement. Thus, we can choose6 as the acceptable minimumN r .
Besides, SARC performs better than the baseline approach and BLADE in all the cases
for N r .

BLADE requires shared interactions in order to learn buyers' subjectivity. However,
in real e-marketplaces, shared interactions are generally very sparse. In this experiment,
we �x the number of past interactions for each buyer, but vary the ratio of shared inter-
actions (Ri ) from 0% to 100%. For each ratio value, MAE is computed as the average
of �ve repeated runs. Figure 3(a) indicates that BLADE performs signi�cantly worse
than SARC whenRi is in the range from0% to 30%. The performance of BLADE
increases with the increase ofRi .

Deceptive Environment In this experiment, we examine the effect of deception (buy-
ers lying about their past experience) on different approaches. We vary the ratio of liars
(Rliar ) from 0% to 100%, and plot the MAE results of different approaches in Fig-
ure 3(b). We can see that the performance of TRAVOS does not decrease much asRliar

increases. Our SARC performs much better than the other three models for anyRliar . It
is not dramatically affected by lying buyers because SARC learns a buyer's subjectivity
from the buyer's own past experience and treats lying buyers as buyers with different
subjectivity. WhenRliar is larger than0:5, BLADE performs worse than TRAVOS, but
consistently better than the baseline approach. Note that in the environment where most
buyers are liars, the performances of other models are not so bad. This is mainly be-
cause buyers have different subjectivity in our simulations. The effect of buyers' lying
behavior may be reduced by the subjectivity difference among buyers, and vice versa.

Dynamic Environment In this experiment, we simulate the environment where sellers
may change the quality of their provided products in their transactions with buyers. We
de�ne a prede�ned parameter,Pseller , to represent the probability that each seller may
vary the values of the �ve attributes of her provided products. We assume that sellers
only change their behavior once in the marketplace. Once their behavior is changed,
they will keep the behavior.Pseller is ranged from0 to 1 and increased by0:05 in
our experiment. The MAE results for SARC and other three approaches are plotted in
Figure 3(c), which demonstrates that the performance of SARC is not sensitive to the
dynamic behavior of sellers, and it performs almost consistently in all cases, while the
performance of Baseline, TRAVOS and BLADE gets worse as the increase ofPseller .
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The main reason is that SARC models the rating behavior (subjectivity) of each buyer
from the buyer's own experience, which is independent of sellers' behavior change. For
TRAVOS and BLADE, they rely on past shared interactions between the buyer and ad-
visors, and these shared interactions may not be suitable source information used for
aligning the buyer's subjectivity due to the possible behavior change of sellers in the
shared interactions. For example, for a buyer and an advisor with the same subjectivity,
if they interact with a seller in different time periods where the seller has changed be-
havior, TRAVOS may incorrectly treat the advisor as a liar and BLADE may incorrectly
conclude that the buyer and the advisor have different subjectivity.

In a marketplace, buyers may also change or adjust their subjectivity after several
interactions with sellers. In this experiment, we assume that buyers will change their
subjectivity with a certain prede�ned probability,Pbuyer . Same as the previous experi-
ment, buyers only change their subjectivity once in the marketplace and then keep their
changed subjectivity in the following interactions with sellers. Figure 3(d) shows that
the performance of SARC is not affected by buyers' dynamic subjectivity. In SARC,
buying agents can update the learned subjectivity of buyers by acquiring their buyers'
own recent experience, which provides �exibility to deal with their buyers' dynamic
subjectivity. The performance of BLADE becomes almost equivalent to that of Baseline
asPbuyer increases, and is consistently lower than SARC. In BLADE, once a buyer's
subjectivity is changed, her buying agent cannot align ratings from advisors effectively
because new shared interactions between the buyer and advisors are needed. TRAVOS
performs worse than Baseline asPbuyer increases because the learned results of advi-
sors become misleading after they change subjectivity.

5 Conclusion and Future Work

In this paper, we proposed a subjectivity alignment approach for reputation computa-
tion, SARC, to address the subjectivity difference problem. In SARC, buyers' subjec-
tivity is learned based on the ratings and detailed reviews they provide about the ob-
jective attributes of their transactions with sellers. More speci�cally, SARC separately
learns theintra-attribute subjectivityandextra-attribute subjectivityof buyers. Buyers'
intra-attribute subjectivityis modeled using Bayesian learning. Theirextra-attribute
subjectivityis learned using a regression analysis model. We also conducted various
experiments to compare the performance of our approach with that of other three com-
peting models, including the baseline approach, TRAVOS and BLADE. Experimental
results demonstrate that: 1) SARC performs better than the other three approaches, and
can more accurately and stably model sellers' reputation; 2) SARC is capable of cop-
ing with environments with deception and dynamic buyer and seller behavior; 3) the
requirement of detailed reviews and objective attributes is not very restrictive.

For future work, we will conduct more experiments on real data obtained from, for
example, eBay (www.ebay.com) to further validate the effectiveness of our approach.
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Abstract. Previous work has used theories of evidence to incorporate belief into
trust and reputation systems. Some important questions that remain, however,
are how agents might recover reputation lost in disputed transactions, and how
new agents with little or no past transaction history might enter the trust net-
work. We attempt to address these issues by extending previous work using the
Dempster-Shafer theory of evidence to include formal argumentation.Reasons
for past bad transaction assignment can be taken into account in new transactions
and discounted by importance. New agents can participate in trust networks by
forwarding evidence as arguments in a distributed reputation system. We present
our preliminary model on incorporation of argumentation frameworks into trust
management systems to support more complex reasoning mechanisms.

Keywords: Dempster-Shafer theory, argumentation, trust.

1 Introduction

Trust and reputation systems have gained widespread use andare increasingly impor-
tant in distributed online applications. Online �nancial transactions, social networking
and mobilead hocnetworks are some typical examples where trust is used to gauge the
potential for successful exchange. A variety of research has modeled methods for build-
ing reputation and combining reputation into the notion of trust [9, 12, 14–17]. De�ning
and measuring the quality of trust, �nding out domain suitable incentives to encourage
participation, dealing with false identities that aim to deceive others by contaminating
trust and decreasing trust transitivity are some potentialresearch areas.

Most reputation systems assume the existence of a pre-builttrust network, where
some initial trust values are already in place. Very few provide a basis for deriving
the initial value when past transaction records are unavailable. Another interesting area
deserving attention is the recovery of reputation after a small number of anomalous
bad transactions. How might a trust query distinguish between transactions with some
strong reason why the outcome was bad and transactions whoseoutcomes were judged
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bad for minor reasons? In these cases, the target agent deemed bad has no way to defend
itself. Again, most reputation systems consider only “witnesses” (who participate in the
transaction by giving reference) or “target agents” (aboutwhom the query pertains).
But there could be other agents that are neither targets nor reference providers, yet have
some relevant information that could be very helpful in making decisions about trust.
Currently, these agents and their information are mostly neglected in decision making.

We assert thatargumentationis a mechanism which gathers both complete and
incomplete information from di� erent sources and reaches a conclusion through logical
reasoning. Consider the situation when a seller in a �nancial transaction is tagged as
untrustworthy and wishes to defend himself. Argumentationallows us to logically infer
the reason behind a supposed bad transaction from the propositions exchanged between
the buyer and the seller agents involved.

Here, we describe our preliminary work in using argumentation to address the above
areas in reputation and trust management. We extend the workof Yu and Singh [22],
which proposes a distributed reputation management systemusing the Dempster-Shafer
theory of evidence. In the following sections, we describe the background work, fol-
lowed with the extensions in our model.

2 Background

In [22], the authors proposed a reputation management system which employs the
Dempster-Shafer theory of evidence as the underlying computational framework. Their
model applies the Dempster-Shafer belief function and Dempster's rule of combination
to compute local and total belief of agents. Our model extends Yu and Singh's model
[22] and resolves the scenario when an agent wants to defend himself to retrieve his past
good reputation. In addition, we propose a mechanism to aggregate discrete but relevant
information from trusted agents and use this in measuring belief in a speci�c agent. We
also discuss rewards and penalties to control the �ow of authentic information between
agents.

In Section 2.1, we give the basic notions of the Dempster-Shafer Theory of evi-
dence, which is the foundation for Yu and Singh's work and forour extensions. Then
we describe how Dempster-Shafer theory was issued by Yu and Singh. In Sections 2.2
and 2.3, we elaborate very brie�y on Yu and Singh's way of computing “local trust”
from past transactions and “total trust” by combining the local trust values of neigh-
bors. Section 3 then introduces argumentation and describes how argumentation can be
used to extend the kind of reasoning possible in Yu and Singh's work. Finally, Section
4 summarizes and outlines future work.

2.1 Dempster-Shafer Theory

The seminal work on the Dempster-Shafer (DS) theory of evidence is Shafer's work
“A Mathematical Theory of Evidence” [20] which is an extension of Dempster's work
“Upper and Lower Probabilities induced by a Multivalued Mapping” [4]. We can say
DS theory is a generalization of traditional probability theory, except that in DS theory,
probabilities are assigned to sets of hypotheses instead ofa single hypothesis. This
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property makes DS theory more expressive then simple probability theory. In DS theory,
there is no relationship between believing in a hypothesis and disbelieving it. Say agent
A's belief in some hypothesis is 0.8. According to DS theory, it is not necessary to
assign the remaining 0.2 to be disbelief in the hypothesis, but rather it could be assigned
to the set of all the possible hypotheses, indicating a lack of knowledge about them.
As evidence is accumulated, the uncertainty narrows down toa subset of the entire
hypothesis set [11]. Say we have two hypothesesT and : T, then Bel(T) represents
belief in hypothesisT, Bel(: T) represents belief in hypothesis: T, which is disbelief
in T, andBel(fT; : Tg) represents belief in the hypothesisT or : T, which represents a
lack of belief inT or : T, or, alternatively, uncertainty about which ofT and: T is true.

Another feature of DS theory is that it does not requirea priori knowledge, which
makes it appealing in cases with no previous data.

Below we introduce the terminology upon which we base our work.

De�nition 1 (Frame of Discernment). TheFrame of Discernment� is the set of ex-
haustive and mutually exclusive hypotheses under consideration.

While DS theory allows for arbitrary frames of discernment, in this paper we will typ-
ically be concerned with frames of discernment that containjust a proposition and its
negationfT; : Tg.

De�nition 2 (Basic Probability Assignment). TheBasic Probability Assignment(BPA)
is a function mapping the power set of the frame of discernment to the interval between
0 and1. The BPA of the null set is0 and the summation of BPA's of all the subsets of
the power set is1.

We can write the constraints on the basic probability assignment as follows,

m : 2� ! [0; 1]

where� = fT; : Tgis the frame of discernment. We will writeL for 2� , and so we have:

m(; ) = 0

and X

A�L

m(A) = 1

Thus:
m(fTg) + m(f: Tg) + m(fT; : Tg) = 1

m(A) is also called the basic probability number and is the measure of the belief that is
committed exactly toA and does not include any belief committed to any subsets ofA.

De�nition 3 (Belief Function). For a subset A, theBelief FunctionBel(A) sums the
basic probability number, or total belief, of all the nonempty subsets of A which are
also called theFocal Elementsof Bel(A). The Belief Function of A is de�ned as:

Bel(A) =
X

B� A

m(B)
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Thus,
Bel(fT; : Tg) = m(fTg) + m(f: Tg) + m(fT; : Tg) = 1

For individual members,Bel andm are the same. Therefore,Bel(fTg) = m(fTg) and
Bel(f: Tg) = m(f: Tg).

2.2 Local Belief from Statistical Data

[22] gives two ways to evaluate the trustworthiness of a given agent, called the target.
The �rst is used when some other agent has su� cient previous experience with the
target agent. In this case, the agent will build its local belief towards the target from
the historical data. The process is as follows: after each transaction, the agent collects
its user's rating about the transaction and saves the latest, say,H of them. Suppose
agentA has had several past transactions with agentV, and he wants to evaluate the
trust he assigns toV. Thresholds
 and ! are de�ned as theupper and lower trust
limits of agentA respectively. Functionf (� ) returns the probability of a given value� ,
where� 2 f0:0;0:1;0:2; : : : ;1:0grepresents the quality of the services re�ected in past
transaction ratings forV. A's local belief towardsV, according to [22] is the following:

Bel(fTg) = m(fTg) =
1X

� =


f (� )

Bel(f: Tg) = m(f: Tg) =
� =!X

0

f (� )

Bel(fT; : Tg) = m(fT; : Tg) =
� =
X

� =!

f (� )

2.3 Combining Beliefs of the Witnesses

The second approach to evaluating trustworthiness in [22] is collecting local belief from
the witnesses. Suppose thatA does not have many past transactions with the targetV.
In this model,A will ask for references from its trusted neighbors. If they have had
enough transactions withV, they will already have computed their local trust and can
pass that value toA. If, however, they also lack su� cient transaction history, they will
pass a reference to another of their trusted agents in turn. The referenced agent then
supplies its local trust aboutV or passes along yet another reference. The authors de�ne
a depthLimitas the maximum length of the referral chain. Let� be the focal element
of belief functionBel overL . Bel1 andBel2 are two belief functions overL based on
di� erent evidence.m1 andm2 are the BPA's ofBel1 andBel2, respectively. According
to Dempster's rule of combination, m = m1(� ) � m2(� ) will be the new combined BPA
over� , which is the sum of the formm1(X)m2(Y), whereX andY range over all subsets
whose intersection is� . Therefore,

m(; ) = 0
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and

m(� ) =

P
Xi \ Yj=�

m1(Xi)m2(Yj)

1 �
P

Xi \ Yj=;
m1(Xi)m2(Yj)

Here,fX1; X2; : : :Xngare the focal elements ofm1, andfY1;Y2 : : :Ymgare the focal ele-
ments ofm2. And, X

Xi \ Yj=;

m1(Xi)m2(Yj) < 1

is also calledcon�ict. This indicates the con�ict between two distinct bodies of evi-
dence.

In the model,� and� are de�ned as the functions that return the local belief and
total beliefs of an agent, respectively. Therefore, in the presence of the witnesses� =
fw1;w2; : : :wng, agentA will update its total belief overV, considering all of the local
beliefs from its witnesses.

� A = � w1 � � w2 � : : : � � wn

As threshold for trustworthiness is then de�ned. AgentA will trust agentV if,

I. � A(fTVg)� � A(f: TVg) � trust threshold, in the case when agentA constructs its local
belief from its own historical data.

II. � A(fTVg) � � A(f: TVg) � trust threshold, when agentA constructs its total belief,
combining the local belief of its witnesses.

Having described the approach suggested by Yu and Singh, we will go on to de-
scribe how argumentation can be used to extend the model.

3 Argumentation to Compute Trust

In the following sections, we will �rst describe the basic ideas of argumentation frame-
works and the acceptability semantics. In later sections, we will describe our model in
di� erent scenarios.

3.1 Argumentation Background

In this subsection, we brie�y describe some key elements ofargumentation. We follow
Dung's notions of argumentation [5], where an argumentation framework is an abstract
entity whose role is determined by its relation to other arguments.

De�nition 4 (Argumentation Framework). Anargumentation frameworkis a pair:

AF = hAR;Ri

where AR is the set of arguments and R is the binary attack relation between arguments.
That is, R� AR� AR.
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For two argumentsA andB, we sayA attacksB if (A; B) 2 R.
To illustrate further the notion of argumentation, we are considering a particular

argumentation system stated in [2] that handles inconsistency in the knowledge base.
According to [2], arguments are built from a propositional knowledge base� that could
be inconsistent.̀ stands for classical inference and� stands for logical equivalence.

De�nition 5 (Argument). [2] An argument is a pair(H;h), where H� � such that

H ` h

H is assumed to be consistent and minimal (for set inclusion). H is called the support,
and h is the conclusion of the argument.

To illustrate the attack relation a little more, [7] de�ned two relations,RebutandUn-
dercut, which are as follows:

De�nition 6 (Rebut). Let (H1;h1) and (H2;h2) be two arguments.(H1;h1) rebuts
(H2;h2) i� h1 � : h2.

De�nition 7 (Undercut). Let(H1;h1) and(H2;h2) be two arguments.(H1;h1) under-
cuts (H2;h2) i� 9h 2 H2 such that h� : h1.

Though the de�nition of attack in [2] includes the notion of rebut, we do not use rebut
here because it has been shown to have some unfortunate consequences for argumenta-
tion systems using propositional logic [1].

De�nition 8 (Con�ict Free). We say, a set S iscon�ict-free if 8A 2 S ,@B 2 S such
that (B; A) 2 R

De�nition 9 (Acceptable). An argument A isacceptablewith respect to a set S i�
8B 2 AR, if (B; A) 2 R, then9C 2 S such that(C; B) 2 R.

That is, an argument is acceptable to a rational agent, i� he can defend that argument
from his own knowledge base.

De�nition 10 (Admissable). Consider S as a con�ict-free set of arguments in the
frameworkhAR; Attacksi . S isadmissiblei� each argument in that set is acceptable
with respect to set S .

De�nition 11 (Preferred Extension). A preferred extensionis the maximal (with re-
spect to set inclusion) admissible set of the argumentationframework AF.

Example 1.Let AF = hfA; B;Cg; f(B; A)(C; B)gi. Clearly, here the preferred extension
E = fA;Cg.

Example 2.Let AF = hfA; Bg; f(A; B); (B; A)gi. There are two preferred extensions,fAg
andfBg.

Example 3.Let AF = hfA; Ag; f(A; A)gi. Here the preferred extension is the empty set.

De�nition 12 (Stable Extension). A con�ict-free set of arguments S will be astable
extension(SE) i� S = fAj8B < S will be attacked by Sg.
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In examples 1 and 2 above, the preferred extensions are also stable extensions. But in
example 3, the empty set is not a stable extension.

The preferred and stable extensions are considered to both be credulous— they
consider an argument to be acceptable when a more skeptical approach might not. Ar-
gumentation also has more skeptical notions of an extensionwhich we will introduce
below.

De�nition 13 (Characteristic Function). Dung de�ned a monotoniccharacteristic func-
tion FAF that returns theacceptable setsfor each input set.

That is,
FAF : 2AR ! 2AR

FAF(S) : fAjA is acceptable with respect toSg

Dung also showed that if the argumentation framework is �nitary which is, for each
argument, there are a �nite number of arguments that attack it, thenFAF is continuous
and its least �xed point can be can be found by iteratively applying it to the empty set.

De�nition 14 (Complete Extension).An admissible set S is aComplete Extensioni�
all arguments defended by S are also in S .

There could be more than one complete extension each corresponding to a particular
viewpoint.

De�nition 15 (Grounded Extension).A con�ict-free set of arguments S is theGrounded
Extensionif it is the minimal (with respect to set inclusion) completeextension.

defeated as well as all those arguments that are supported directly or indirectly by these
un-attacked arguments. A grounded extension is also theLeast Fixed Pointof FAF.
In example 1,fA;Cg is also the grounded extension, but in example 2, the grounded
extension is empty. In other words, we can say that a skeptical reasoner will conclude
nothing if the grounded extension is empty.

3.2 First Scenario: Target Has No Historical Data

In this scenario, we consider the situation when an agent needs to transact with another
one with whom he has no previous experience and no referral. Suppose, a buyerXi has
to buy a product from sellerYj , NeitherXi nor any of his neighbors have any previous
transactions withYj . How is Xi going to decide if he will trustYj or not? Consider the
conversation betweenXi andYj to be as follows:

X0
i s claims: fA; B;C; Dg

Y0
j s claims: fa; b; c; dg

From Figure 1(a), we can see thatYj 's claim a is attacked byXi 's A. Yj backed up his
claim with b, which attacksA. b is again attacked byXi 's claimsC andD. In the same
way, D is attacked byd andc, andB attacksc. At this point,Xi will build an argumen-
tation frameworkAF out of the conversation and compute the stable extensions. Here
we are assuming a meaningful argument should be well-founded and coherent. As we
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(a) graphical representation of dialogue (b) argumentation framework, AF,
after providing evidence

Fig. 1.Conversation betweenXi andYj

are also assuming all agents are skeptical reasoners, they will decide nothing unless a
winning extension is found.

Xi 's AF and the generated stable extensions will look like the following (we follow
Dung's notion of abstract argumentation here):

F = hArg; Atti

= hfA; B;C; D;a;b; c; dg; (A;a); (b; A); (C;b); (D;b); (d; D); (c; D); (B; c)gi

whereSEXi = fA; B;C; DgandSEYj = fa;b; c; dg.
As our agents are skeptical reasoners, they tend to follow the grounded extension as

its conclusions are not controversial. Figure 1(a) shows,Xi has two unattacked claims
B and C and Yj has one unattacked claimd. At this point, we can sayXi has two
arguments that no one can attack but can we say thatXi has two arguments that no one
can disprove? No. If we follow this process, anyone inYj 's place can provide as many
arguments as he can for the sake of winning. Unfortunately, this could happen both
ways around and could go on and on, which will destroy the well-founded structure of
the framework.

Instead of computing the conventional grounded extension (GE), we propose anex-
tendedGE, which is limited to consideringevidenceas the starting point. In our model,
evidenceis the vital element to win an argument. Our opinion is that, if someone is
saying something true he should be able to support his claim with evidence. Here by
“evidence”, we are indicating statements about the ground truth of the domain which
are non-con�icting if the domain is consistent. At this point, neitherXi nor Yj has pro-
vided any evidence. This forces them to supply evidence to fortify their claims. In Fig-
ure 1(b), we see that,Xi supports his claimC with evidencer. As evidence provides the
non-con�icting ground truth, the attacked arguments will automatically be eliminated.
Therefore,r eliminatesb. Likewise, Yj supports his claimc with evidenceq, which
eliminatesB. The agent must iteratively return arguments which are themselves evi-
dence or have evidence as a supporting argument. These will eliminate the arguments
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that these arguments attack. This process follows until theagents reach a conclusion.
After elimination, the new stable extensions will look likethe following:

SEXi = fA;C; rg

SEYj = fa; c; d;qg

At this point, both of the stable extensions have exactly onepiece of evidence. In
our model, the evaluator will break this tie by considering the depth of the supporting
evidence. We extend the idea ofdepthLimitR from Yu and Singh [22] and propose
depthLimitE which denotes the number of hops the evidence is away from theclaim
it is supporting. In the example above,r is two hops away from the initial claimA,
andq is six hops away from its initial claima. Intuitively, evidence is more relevant if
depthLimitE is short, and evidence becomes more irrelevant asdepthLimitE increases.
This makesSEXi the winner. Therefore,Yj fails to defend his claims, andXi will rate Yj

from its lower trust limit range which will be used later to compute the BPA ofYj , and
afterwards belief inYj .

Fig. 2.Trust Scale of agentXi

Consider the following example:Xi 's upper trust limit is
 = 0:8 and lower trust
limit is ! = 0:4. Therefore, all the transactions with� = [0:8;1:0] count forfTgand
� = [0;0:4] count for f: Tg. The rest count forfT; : Tg. The scenario we present is a
special case whereXi has no previous data aboutYj . Xi will select a value from its
lower trust limit range [0;0:4], depending on how badlyYj failed to defend himself as
a prior rating forYj . Let Xi select 0:2 as the initial rating forYj andXi 's probability of
making a good decision as 0:8. A potential way of measuring initial local beliefBel in
Yj could be:

Bel(Yj) =
Good decisions taken byXi

Total decisions taken
� Prior rating forYi = 0:8 � 0:2 = 0:16

ThoughXi 's probability of making a good decision is high, the result is low due to
Yj 's poor rating. If this value is below the risk threshold, then Xi will not engage in any
communication or transactions withYj .

The idea ofdepthLimitE to count the number of hops across pieces of evidence
could later be used in risk analysis. As we said before, evidence is more relevant when
it supports claims closer to the primary claim. Hence, we cansay:

depthLimitE / risk
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Some researchers propose a semantics (the ideal semantics)that is less skeptical then
grounded extension but more skeptical than preferred extension [6]. In our model, we
can control the skepticism by takingdepthLimitE into account. Intuitively:

depthLimitE /
1

skepticism

We assume that each agent has its distinct risk threshold which solely depends on the
current state of that agent. A higher risk threshold indicates the agent is capable of
taking more risk. Therefore we can say that an agent with a high risk threshold can
choose to consider evidence with largerdepthLimitE. ThusdepthLimitE could be a
potential factor to consider in analyzing trust sensitivity. Note that we reserve discussion
of risk analysis and trust sensitivity for future work.

3.3 Second Scenario: Target has Transaction History

In this section, the seller is known to the buyer. As the buyerhas had previous trans-
actions with the seller, it will build its local trust from the previous trust rating using
Dempster-Shafer theory. Consider the following:Xi has had six previous transactions
with Yj . After the last transaction,Yj 's ratings are, say,f0:2;0:6;0:9;0:7;0:3;0:2g. Let
x 2 f0:2;0:6;0:9;0:7;0:3;0:2g. According to Dempster-Shafer theory,Yj 's BPA will be:

m(fTg) =
1X


 =0:8

f (x) = 1=6 = 0:167

m(f: Tg) =
! =0:4X

0

f (x) = 1=6 � 3 = 0:5

m(fT; : Tg) =

 =0:8X

! =0:4

f (x) = 1=6 � 2 = 0:333

Therefore, the belief values forYj would be:

Bel(fTg) = 0:167

Bel(f: Tg) = 0:5

Bel(fT; : Tg) = 0:333

As we can see,Bel(fTg) � Bel(f: Tg) is negative (� 0:333), which is obviously a lot less
then the trust threshold. Thus the buyer will not engage in any transactions with the
seller.

In the equation used for deciding “to trust” or “not to trust”:

Bel(fTg) � Bel(f: Tg) � trust threshold

if the di� erence is large (the seller is either highly trusted or highly distrusted), then
it will follow the same process. But if the di� erence is small, which is, a big number
of transactions fall under an uncertain state, then the buyer will follow the process of
the �rst scenario, outlined in Section 3.2, to see if the current transaction can limit the
uncertain state.
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3.4 Third Scenario: Combining Trust in a Prebuilt Trust Netw ork

In most practical cases, the evaluator or buyer does not haveenough transactions or has
no transactions at all with the desired seller. Here, buyersoften look for referrals to
the learn something about the seller. The situation where noreferrals are available was
described in Section 3.2. Now we are going to describe the case of combining referrals.
In our model, the buyer or evaluator sends out the query to itstrusted neighbors asking
for testimonies about the seller. If the neighbors have pastexperience and have built a
local belief structure (in the way described in Section 3.2), then they pass their belief
value(s)4 to the buyer. In cases where the seller is also unknown to the neighbor, the
neighbor may pass a referral on to a potential agent who may have past experience with
the seller. This process follows until the evaluator gets the desired testimony (or there
are no more agents left to query). As mentioned earlier, in [22], the authors present
depthLimitR, which denotes the length of the referral chain. We introduce some addi-
tional constraints here. IfdepthLimitR falls outside of a given range, then the seller will
be treated as a newcomer with no referral history; and the scenario described in Section
3.2 will be followed. This range will be set by risk analysis,which is a topic we reserve
for future work.

Fig. 3.Local trust propagation in pre-built trust network

4 Multiple belief values may exist, for example, where beliefs are contextualized and a vector
associates individual beliefs with a set of contexts. Here, we abstract the notion of belief into
a single value and reserve discussion of belief as a complex data structure for future work.
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Consider the graph in Figure 3. Our buyer,A, sends out a query about sellerC to
its trusted neighborsB, D andE. Among them, onlyB has previous experience with
C and has hence built a local belief structure aboutC. This local belief will be passed
on as a testimony toA. The transaction will be betweenA andC; andC's dialogues,
along with its testimony, will be passed toA. At the same time,D andE will pass the
query toG andF, respectively. It is a very common scenario in practical cases thatG
andF have no information aboutC, but they do have experience about the product he is
selling—which is crucial in making a decision, but was not explicitly requested in the
query. These claims, along with the testimonies, will be passed toA in a similar fashion.

Local belief values will be merged using the method proposedin [21]. We use the
concatenationandaggregationoperators proposed in [13], and subsequently used by
[21], to merge the trust values in the graph. The concatenation operator is used to merge
trust within the same referral chain. On the other hand, the aggregation operator is
used to combine the trust values on the same topic that come from di� erent sources
(agents). In our example, consider thatA's local belief towards its trusted neighbors
B, D and E are MB, MD and ME, respectively. Again,B holds MC, its local belief
structure concerningC, E holds MF , its beliefs inF, andD holds MG, its beliefs in
G. Here,MB = BelB. This belief function has three parts: “Belief” inB, “Disbelief”
in B. and “Uncertainty” aboutB. Separately,Bel(fTg) = m(fTg), Bel(f: Tg) = m(f: Tg)
andBel(fT; : Tg) = m(fT; : Tg), which are the summation of the probabilities of “Good
transactions”, “Bad transactions” and “Uncertainty”, respectively (as discussed above).
For simplicity and similarity, we will follow the notions used in [21]. Let,

m(fTg) = PB

m(f: Tg) = NB

m(fT; : Tg) = UB

Therefore, following [21], we constructA's primary beliefs aboutC as follows:

MAC = MB 
 MC

PAC = PB � PC

NAC = PB � NC

UAC = 1 � (PB � PC) � (PB � NC)

Here,
 is the concatenation operator, which is just Dempster's rule from before. At this
point, we can say thatA hasMAC primary belief inC's claim fa;bg. MAF andMAG will
be constructed in a similar way. We mentionA's “primary belief” in C becauseA still
has to assimilate all of the information he gets fromG andF to come up with his �nal
belief.

Next, all these dialogues fromC, F andG will be put in an argumentation frame-
work, along withA's knowledge similar to the scenario described in Section 3.2, except
that the pivotal point will be the “combined local belief” inthose claims. That meansA
will consider the following in constructing the argumentation framework:

MACfa; bg [ MAGfig [ MAFfp; qg [ DA
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Here,DA is A's knowledge about the domain. Following our earlier assumption, high-
valued claims will be prioritized over low-valued claims, while defeating each other.
If there is a tie (same combined trust), then the scenario in which there is no prior
history (Section 3.2) will be followed again, and this time “evidence” will be used as
the tie-breaker.

3.5 Discussion

This section highlights three issues that have not been speci�cally addressed above, but
need to be considered when using argumentation to compute trust. These issues are: the
Fake Pro�le problem, the Trust Transitivity problem, and the Incentive problem. Each
is discussed brie�y, below.

The Fake Pro�le problem is a major issue in reputation systems. Membership in
most social networking and business rating sites such as Yelp5, for example, is free. As
a result, there is very little to stop people creating many di� erent pro�les with which
they boost or downgrade the reputation of an entity. These fake pro�les have a very bad
impact on cooperation or even initiation of a transaction. This impacts how newcomers
will be treated [8]. In our model, every agent has to defend his claims with evidence. No
matter how many pro�les that agent has received or how many good referrals were col-
lected, in the end, he needs to hold evidence. This requirement suppresses fake pro�les
to a great extent. Moreover, as shown in [18], with enough exchanges of arguments, it is
not possible for one agent to deceive another inde�nitely— eventually their knowledge
bases converge.

In belief systems,Trust Transitivityis another major issue. It is possible that what
the evaluator decides is most heavily in�uenced by its witnesses' beliefs. In this case,
making decisions that depend upon witnesses' local beliefsis prone to deception. There
are several proposals in the literature addressing trust transitivity [3, 10, 14, 19, 22]. In
our model, since contributing agents are invisible to each other (e.g., in Figure 3,C, F
andG are invisible to each other), a malicious agent does not gainany advantage by
deceiving a trusted node, as he does not necessarily know whoopposes his claim. This
leaves him with no choice but to deceive large numbers of agents, possibly all of an
evaluator's trusted nodes! And, in the end, the deceiver is required to show evidence;
trust transitiveness does not help him much here.

There are cases when trusted agents exist but have littleincentiveto contribute in-
formation to third-party transactions. To encourage them to participate, we propose
rewardValandpenaltyVal, respectively. The latter,penaltyValwill decrease the agent's
rating and hence belief in him. Similarly, the former,rewardVal, will increase this rat-
ing. This will incentivize agents to contribute and will penalize malicious agents for
infusing unauthentic information. The risk threshold of the agent can thus be com-
pared to thepenaltyValandrewardVal to optimize decision making. If these values
are made public, then it is possible to guess an agent's current state by analyzing these
values. Moreover, if an agent is willing to deceive and can a� ord thepenaltyVal(i.e.,
penaltyVal < riskThreshold), then he may take the risk of deceiving the evaluator
agent. We will discuss these values more in our future work.

5 http://www.yelp.com
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4 Summary and Future Work

In our model, we have addressed some problems in current trust management and rep-
utation systems by incorporatingevidenceinto an argumentation framework, and then
integrating it into multiple trust management scenarios. In future work, our plan is to re-
�ne the theory and focus more on risk analysis. In particular, we are considering adding
the concept ofutility to our trust management models in order to capture the di� erential
importance of evidence to di� erent agents. This might be used to perform a risk analysis
to judge the e� ects of making incorrect trust-based judgments. We also intend to inves-
tigate foundations and formulations for assigning trust thresholds and choosing ratings
to measure BPA which will make our model more precise. Later,we plan to implement
it in a more practical environment, such as a recommendationsystem for online social
network applications.
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Abstract. In order to allow agents in a multi-agent systems to e�ec-
tively communicate about trust, we propose to personalise the commu-
nication about trust. In previous work we described AdapTrust and an
argumentation framework; the former to adapt the trust model to the
needs of the receiving agent and the latter to formalise a language in
which to communicate. In this paper we propose a dialogue protocol for
this communication, formalising it as an extension of Prakken's dialogue
game for an information-seeking dialogue.

1 Introduction

Trust models for computational agents often center around the processing of ev-
idence from direct interactions with a target. Nevertheless, in su�ciently large
multi-agent systems it is unfeasible for agents to have had previous direct inter-
actions with all targets they may need to interact with. It is thus essential that
they can communicate about their trust evaluations, in order to decide whether
or not a target is trustworthy. Trust, however, is a personal and subjective evalu-
ation of a target for the ful�llment of a speci�c goal, and it is not straightforward
to communicate this.

So far, communication methods for trust have relied mainly on machine-
learning techniques to translate another agent's evaluation into the receiver's
own frame of reference [1,5,12]. All of these methods learn a translation based
on interactions that the recommendation-seeking agent shares with the recom-
mendation-supplier, and for this to succeed the agents must share a large number
of interactions. If this is not the case, the agents cannot learn an accurate trans-
lation and another method is required.

In previous work we proposed that the recommendation-supplier adapts, or
personalises, its trust evaluation to the speci�c needs of the recommendation-
seeker, rather than the seeker attempting to translate the unadapted recom-
mendation from the supplier [4]. We presented an argumentation framework for
communicating the beliefs that in
uence the agent's trust evaluation and the
goal for which it evaluates the target. In this paper we propose a formal dia-
logue protocol for this argumentation. This dialogue protocol clearly de�nes the
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moves an agent is allowed to make when communicating in order to personalise
communication about trust.

In Section 3 we present a dialogue protocol for the argumentation and person-
alisation of trust, but �rst we brie
y summarise our argumentation framework
and a prerequisite for it: a method for incorporating the trust model into an
intelligent agent. AdapTrust is an extension to the BDI-agent model that allows
an agent to adapt its trust model according to its beliefs and goals.

2 Preliminaries

Our method for enabling personalised communication about trust is based on
three capabilities an agent must have. Firstly, an agent must be able to adapt
its trust model in order to personalise its evaluations to the other agent's needs.
Secondly, an agent must be capable of communicating its criteria for evaluating
trust, as well as the underlying beliefs and goals leading to these criteria. Finally,
an agent must be willing and able to change its trust model, if it is persuaded
that its beliefs about the environment, and thus the criteria for calculating trust
are wrong.

We assume that agents are willing to adapt their model if they are convinced
it is inaccurate. For this adaptation to be possible, the trust model must be
incorporated into the cognitive reasoning process of the agent, and we propose
to use AdapTrust for this [6]. To communicate about how the trust model needs
adapting in order to personalise a trust recommendation we use an argumenta-
tion language [4] and the dialogue protocol that we present in this paper. We
start with a brief explanation of AdapTrust and the argumentation language.

2.1 AdapTrust

Computational trust models are, fundamentally, methods of aggregation: they
combine and merge data from several di�erent sources into a single value, the
trustworthiness of a target. Moreover, this computation depends on thebeliefs
the evaluator has about the world, as well as thegoal it is trying to achieve.
Luckily most computational trust models come equipped with a way of imple-
menting this dependency: they have parameters that can be used to adjust the
behaviour of the trust model. The aim of AdapTrust is not to present another
trust model, but to incorporate existing trust models into an intelligent agent
[6]. AdapTrust works by changing the parameters of the trust model in accor-
dance with the beliefs an agent has about the environment and the goal the
agent wants to achieve, and for which it needs the trust evaluation.

Priority System The parameters of a trust model describe the importance of
the di�erent criteria for evaluating trustworthiness. However, it is more useful to
consider this the other way round: the relative importance between the di�erent
criteria de�ne a set of parameters for the trust model. These criteria are directly
under an intelligent agent's control, and thus an agent is able to adapt its trust
model. AdapTrust describes the speci�c techniques necessary to do this. The
�rst of these is L P L , a language to describe the relative importance of any
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two criteria that in
uence a parameter of the trust model. We use a subset of
�rst-order logic, with a family of special predicates to de�ne this importance
relation, also called a priority ordering. For each parameterp of the trust model,
the binary predicates � p and = p are de�ned with the expected properties of
strict ordering and equality, respectively. The language uses a set of constants
to represent the criteria that in
uence how the trust model should work. A
Priority System is de�ned as a satis�able theory in this language. For instance,
consider an eCommerce environment. If an agent uses a weightw to calculate its
evaluation of a sale, and it �nds the price of an item to be more important than
its delivery time, it can have the priority price � w delivery time in its Priority
System.

Priority Rules The second technique of AdapTrust is to create the link be-
tween, on the one hand, an agent's beliefs and goals, and on the other hand,
the priority between the di�erent criteria for evaluating trust. This link makes
explicit the adaptive process: a change in an agent's beliefs or goals e�ects a
change in the priorities over the criteria, which in turn changes the parameters
of the trust model. The connection between the beliefs or goals and the priori-
ties is made through what we callpriority rules . The priority rules are speci�ed
using another �rst-order language, L Rules , with predicates  Belief and  Goal

specifying how a set of beliefs, or a goal, respectively, leads to a speci�c priority
relation between two criteria. By using these rules, we see that when the belief
base changes the priorities can change. Additionally this is how the multifaceted
aspect of trust is emphasised: the goal the agent is trying to achieve in
uences
the priority system and thus the trust model. For instance, in an eCommerce
example, an agent might need to buy an item urgently. It then has the goal
buy urgent(item ). For this goal, delivery time is more important than the price,
so it has the priority rule buy urgent(item )  Goal (delivery time � w price).
This adapts its trust model to the requirements of the goal. The priority rules
are atomic predicates, rather than implications in L Rules , because standard �rst-
order semantics for material implication should not hold. For instance, if the
agent does not havedelivery time � w price in its priority system, this does not
mean that the agent does not have the goalbuy urgent(item ). There may just
be other, con
icting priority rules that have precedence over this rule.

2.2 Argumentation Framework

Our argumentation framework extends Pinyol's framework for arguing about
trust [8], and is explained in more detail in [4]. In this section we summarise the
argumentation framework and language.

The �rst requirement for arguing about trust is that the agents have a com-
mon language in which to describe their trust evaluations. We use theL Rep

language, described by Pinyol et al. [9]. This is a �rst-order language about
trust and reputation, de�ned by a taxonomy of predicates used for describing
the process of computing trust. Some of the predicates describe what they refer
to as ground elements, such as direct experiences and communications. We rep-
resent the ground elements as the setground(L Rep ). Other predicates describe
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\higher" concepts, such as the outcome of a direct experience or the reputation
of a target. In Pinyol's argumentation framework, L Rep is su�ciently expressive
for all the communication, but we need to extend the language we use. First,
however, we describe one thing our frameworks have in common: the interpre-
tation of a trust model as an inference relation.

Trust Models and Inference A key point of both Pinyol's argumentation
framework and our own is the focus on how to generate arguments. For this we
build on the representation of any computational process as the application of
a �nite set of inference rules [3]. A trust model is a computational process and
can thus be represented by a set of inference rules. The process of calculating a
trust evaluation can be seen as the �nite application of a number of inference
rules I on a set of inputs � � ground(L Rep ) to obtain the output � 2 L Rep .
We write � ` I � . The inference rules themselves depend on the speci�cs of the
computational process and thus the actual trust model being used, but for any
computational trust model, such an inference relation exists. An example could
be to infer the trust evaluation from reputation as follows:

rep(T; X )
trust (T; X )

The main di�erence between Pinyol's framework and our own, is that we
assume the trust model is integrated into the agent's cognitive process by using
AdapTrust, and it is therefore dependent on the agent's beliefs and goals: trust is
an evaluation of a target for a speci�c goal, given the evaluator's beliefs about the
environment. These beliefs and this goal in
uence how the trust model computes
an evaluation and this must be represented as well in the inference rules. We
assume the agent's beliefs and goals are represented in logical languagesL Bel

and L Goal , as is the case in AdapTrust. For a set of beliefs	 � L Bel and a
goal 
 2 L Goal we have a set of inference rulesI 	;
 , and we write � ` 	;
 � to
represent that input � � ground(L Rep ) results in trust evaluation � 2 L Rep for
goal 
 , given beliefs	 .

The way these inference rules are a�ected by the beliefs and goal is de�ned
in AdapTrust: a set of beliefs and a goal cause certain priority rules to trigger,
which leads to a set of priorities. A set of priorities describes a legal set of values
for the parameters and in this way the trust model is adapted to the beliefs and
goals. Not all inference rules are a�ected by the same priorities, because not all
inference rules use the same parameters. We thus see that for a set of beliefs	
and a goal 
 , we have that for any � 2 I 	;
 there is a (possibly empty) set of
parametersparams(� ). The values for the parameters, in turn, are prescribed by
a set of priorities � 	;
 .

Arguing about Trust To be able to communicate about the trust process
we must describe a formal language. We use the argumentation framework pre-
sented by Ches~nevar and Simari,LDS ar [2], which provides an intuitive way
for representing the inference rulesI in a communication languageL Arg . L Arg

is a labelled language for defeasible reasoning, but for simplicity we omit the
labels (for the full formalisation see [4]). We interpret it as a non-monotonic

58



propositional language, in which we allow the connectiveŝ as conjunction, and
! as non-monotonic implication with semantics as in logic programming (for
the formal semantics, see [2]). The language has three deduction rules, which
are:

Intro-BDU:
�

for any � 2 L KR

Intro-AND:
� 1; : : : ; � n

� 1 ^ � � � ^ � n

Elim-IMP:
� 1 ^ � � � ^ � n ! �; � 1 ^ � � � ^ � n

�

These deduction rules are used to deduce the conclusion of an argument
from the argumentative theory, which is a set of basic sentences inL Arg that
are calledbasic declarative units(bdus). These bdus are ground sentences in an
underlying language for knowledge representationL KR . In Pinyol's framework
that was L Rep , but we will extend this.

Let the agent have beliefs	 and goal 
 for which a trust model infers trust
evaluation � from input � . We write � ` 	;
 � using inference rulesI 	;
 . Let � 2
I 	;
 be an inference rule such that� 1; : : : ; � n ` � � , with � 1; : : : ; � n ; � 2 L Rep ,
and the values of the parametersparams(� ) are prescribed by the priorities � 	;
 ;
then we add a bdu (

V
� 2 � 	;


� ) ! (� 1 ^ � � � ^ � n ! � ) in L Arg . We do this for
all � 2 I 	;
 .

Furthermore we add a bdu for each priority rule: if �  Belief � is a priority
rule, then � ! � is a bdu. The same for any goal
 0  Goal � , we have
 0 ! � 2
L Arg . We also add all � 0 2 � , all the agent's beliefs 2 	 and the agent's goal

 as bdus. This means that the knowledge representation languageL KR that
underlies L Arg must be extended too. We haveL KR = L Rep [ L P L [ L Rules [
L Bel [ L Goal .

The set of bdus generated in this manner gives a way for an agent to justify
its trust evaluation in L Arg . While the above description seems to imply that
an agent starts from the ground elements inL Rep , its beliefs and its goals, to
generate bdus in L Arg , in actual fact the reverse is true. An agent uses its
trust model, in
uenced by its beliefs and goal, to calculate a trust evaluation.
It then traces this process back and encodes its calculation process, and the
inputs it used, as bdus in L Arg . Because sentences inL Arg are communicable
between agents, any agent can follow another's reasoning and deduce the trust
evaluation from the inputs without knowing any of the details of the other agent's
trust model. By following this deduction process an agent can also reason about
whether it agrees, or disagrees, with the other agent and why. We note the main
reasons agents may disagree about the trust model:

{ The agents disagree about (some of) the ground elements� � L Rep that are
introduced into L Arg as bdus. This was dealt with in Pinyol's argumentation
framework and we do not go into detail about that [8]. In general we will as-
sume that if agents disagree about the ground elements, then communication
fails, but it should not happen often. In general the recommendation-seeking
agent is asking for advice about a target that it has no, or little, knowledge

59



of, and it can accept that the recommendation-supplier has had a number
of direct experiences with the target.

{ The agents disagree about (some of) the beliefs	 � L Bel that are introduced
as bdus. In this case the agents can enter a persuasion dialogue to try to
reach an agreement about beliefs.

{ The agents have di�erent goals. The recommendation-seeking agent should
make it clear from the start that the recommendation is needed for a speci�c
goal, and the recommendation-supplier should use this goal in its trust com-
putation. If this does not happen, the recommendation-seeker should reject
the recommendation.

{ The agents disagree about a set of priorities that beliefs	 and goal 
 lead
to. In this case, the agents have di�erent priority rules in AdapTrust. They
can communicate these priority rules between each other and adapt their
trust model.

{ Despite having the same priorities, the agents disagree on the evaluation
that can be inferred from a set sentences� 1; : : : ; � n 2 L Rep . In this case the
agents' computational process is too di�erent to be able to adapt: they agree
on all the premises, but not on the conclusion. The recommendation-seeker
should reject the recommendation from that supplier and try to communicate
with a di�erent agent.

In the next section we present a formal dialogue protocol in which two agents
can argue about a trust evaluation and �nd places that they disagree. It then
allows them to deal with this disagreement in the way we described above.

3 Dialogue Protocol for Personalising Trust

The argumentation in the previous section can be used by an individual agent to
justify its trust evaluation in a language that the other agents understand. We
now specify a protocol that allows agents to argue back and forth in order for
the requesting agent to receive a personalised trust recommendation from the
witness. We illustrate this protocol with an example, and start with explaining
this example.

3.1 An example of argumentation

An argument for a trust evaluation can be represented in a tree. We call this an
argumentation tree and give an example of one in Figure 1. The argumentation
tree can be followed by applying the deduction rules ofL Arg at each level. In
order to be succinct, we use shorthand in the tree by referring to nodes, rather
than repeating the content of a node. For instance, in nodeR1 we can expand
E2 ^ E3 ! E1 to its meaning: img(Jim; 5) ^ rep(Jim; 1) ! trust (Jim; 5),
where img and rep are predicate symbols inL Rep , and are short for the agent's
image, and reputation of the target. An argumentation tree, such as this one, is
used in a dialogue to communicate personalised trust evaluations.

We do not explore all the paths in the tree and leave the nodesE2 and E3

unexplored, because their unfolding results in a similar structure to the unfolding
of the root (E1).
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Fig. 1. An example of an argument. The rectangular nodes are bdus.

3.2 A formal dialogue protocol

We can now de�ne a formal dialogue system for communication about person-
alised trust recommendations in which the argumentation can be communicated.
The system we need is, for a large part, an information-seeking dialogue system,
according to the classi�cation by Walton and Krabbe [13]. It thus stands to
reason that we use a protocol similar to the one presented by Parsons et al. [7].
However, while our dialogue is for a large part information-seeking, it also in-
corporates some aspects of persuasion dialogues. We thus present the formal
system in a similar structure to the dialogue system presented by Prakken [10]
for persuasion dialogues, in order to allow for some locutions in addition to the
\question", \assert" and \challenge" locutions proposed by Parsons et al.

De�nition 1 (Dialogue System for Personalised Trust (adapted from
Prakken's De�nition 3 [10])). A dialogue systemfor personalised trust is
a tuple D = hLC ; P; CRi where L C (the communication language) is a set of
locutions, P is a protocol for L C , and CR is a set of e�ect rules of locutions
in L C , specifying the e�ects of the locutions on the participants' commitments.

The three parts are described below, but �rst we must de�ne some of the
basic elements of a dialogue. The �rst of these is the set of participants them-
selves. These participants of the dialogue are the recommendation-seeker and
recommendation-supplier, and we denote them withQ and R, respectively. Both
of these agents have acommitment store, a set of sentences inL Arg that they
have committed themselves to [13]. Commitment is a complicated concept, but
we use it in a very speci�c way: an agent's commitment store contains beliefs it
has voiced during the dialogue and iscommitted to justify and defend. Because
the dialogue is essentially an information-seeking dialogue, the recommendation-
supplying agent R will mainly be the one committing itself to sentences in the
dialogue. As the dialogue progresses, the recommendation-supplier will justify,
in increasing detail, why the initially communicated trust evaluation holds. Ev-
ery justi�cation of this kind adds to the recommendation-supplier's commitment
store. The agents' commitment stores are denotedCQ and CR for agentsQ and
R, respectively. Initially both agents' commitment stores are empty.
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With these concepts in place we can move on to the de�nition of the locutions
and protocol of a dialogue system. We start with the locutions.

De�nition 2 (Locutions for Personalised trust). The locutions allowed
in the dialogue for personalised trust are speci�ed byL C and include the basic
locutions for information-seeking, speci�ed by Parsons et al. [7]. The locutions
are explained in Table 1.

Some of the locutions have an e�ect on an agent's commitment store. We
usually denote the agent (eitherQ or R) that is sending a message, also called
making a move, withs and the other agent withs. We take C0

s to be the new
commitment store of agents after sending the locution, andCs is the old commit-
ment store prior to sending. The way the commitment store is updated for each
locution is detailed in Table 2, which thus de�nes the rulesCR of the dialogue.

Locution Use
request recommendation (t; 
 ) The initial request for a recommendation,

with t 2 Agents and 
 the goal that Q
wants the recommendation for.

assert (p) Assert that p is true, where p 2 L Arg .
justify (p, S) Assert that S � L Arg is the (direct) sup-

port for p in L Arg .
challenge (p) Challenge a sentencep 2 L Arg in the other

agent's commitment store. An agent may
challenge a sentencep if it wants the other
agent to justify p.

counter (� R , � Q ) Propose an alternative priority � Q to pri-
ority � R with � Q ; � R 2 L P L . Note that
this switches roles: counter is similar in
use to assert , so the agent Q, that has
thus far only been challenging assertions,
now proposes its own priority, that R can
now challenge.

argue ( ) Propose to enter into a separate persuasion
dialogue about beliefs  � L Bel . The de-
tails of this dialogue are outside the scope
of this paper, but we propose to use the di-
alogue system proposed by Prakken [11].

end Indicate that the dialogue has concluded.
Table 1. Locutions in L C , the communication language for personalised trust recom-
mendation dialogues

The locutions request recommendation , assert and challenge corre-
spond directly to \question", \assert" and \challenge" in Parsons et al.'s system.
Moreover, justify also corresponds to \assert" in Parsons et al.'s framework,
but because they do not allow agents to backtrack, the sentence being justi-
�ed is always immediately clear from the previous dialogue steps. The locutions
counter and argue are not present in regular information-seeking dialogues. We
add these so that agents can propose alternative priority systems for AdapTrust
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Locution E�ect on commitment store
request recommendation (t; 
 ) CQ = ; , CR = ;
assert (p) C0

s = Cs [ f pg
justify (p, S) C0

s = Cs [ S
challenge (p) C0

s = Cs

counter (� 1 , � 2) C0
s = Cs [ f � 2g

argue ( ) C0
s = Cs

end C0
s = Cs

Table 2. The e�ect of the various locutions in L C on the sender's commitment store

or attempt to persuade each other about their beliefs | thereby facilitating the
adaptation of the agents' trust models.

If we look at the argumentation tree of Figure 1, then we see that, �rst
of all, the recommendation-seeking agent must communicate its request, using
request recommendation (Jim; 
 ) with 
 the goal for which it wants to know
whether Jim is trustworthy or not.

The recommendation-supplier answers withassert (trust (Jim; 5)), which adds
the atomic sentencetrust (Jim; 5) to its commitment store: CR = f trust (Jim; 5)g
and CQ = ; . The seeker can now choose a next action, but there is only one action
that makes sense:challenge (trust (Jim; 5)), resulting in the recommendation-
supplier answering justify (trust (Jim; 5); f E2; E3; R1g). The sentences it uses
as justi�cation are also added to its commitment store, so we have:CR =
f E1; E2; E3; R1g Now the recommendation-seeker really does have a choice in
its next move in the dialogue. We de�ne movesand legal movesin the dialogue
next. Not all locutions can be uttered at any moment, there are rules to the
dialogue. These are de�ned by the protocolP in terms of the moves allowed.

De�nition 3 (Moves and dialogues (adapted from Prakken's De�ni-
tion 5 [10])). The set M of movesin a dialogue is de�ned asN � f R; Qg �L C ,
where the three elements of a movem are denoted by, respectively:

{ id(m), the numerical identi�er of the move
{ player(m), the agent performing in the move
{ speech(m), the speech act performed in the move

The set of dialogues, denoted byM �1 , is the set of all sequencesm1; : : : from
M , such that eachi th element in the sequence has identi�eri and for any i > 1,
player(mi ) 6= player(mi � 1)3. The set of �nite dialogues is denoted byM < 1 .
For any dialogue d = m1; : : : ; mi ; : : : , the sequencem1; : : : , mi is denoted bydi ,
whered0 denotes the empty dialogue. Whend is a dialogue andm a move, then
d; m denotes the continuation ofd with m.

A protocol P on a set of movesM is a setP � M < 1 satisfying the condition
that whenever d 2 P, so are all initial sequences ofd. We de�ne a partial function
P r : M < 1 ! 2M for personalised trust dialogues, that allows us to derive
the protocol P. Prakken de�nes this in the opposite manner: with the protocol
de�ning the function [10]. In practice, however, it is easier to de�ne the function
than all possible sequences of legal moves.
3 Note that this is a speci�c implementation of the turn-taking function in Prakken's

dialogue system [10].
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Locution Precondition. d is the dialogue so far and s the player
request recommen-
dation (t; 
 )

A recommendation-seeker may only request a recommen-
dation in the �rst move, t must be a target and 
 a goal.
Formally: d = d0 , t 2 Agents and 
 2 L Goal

assert (p) A recommendation-supplier may only assert a trust evalu-
ation in the second move, and the goal and target of the
recommended trust evaluation must be equal to the goal
and target for which it was requested. Formally: d = m1 ,
player (m1) = s, p 2 L Rep , target (p) = t and goal(p) = 
 ,
with 
 and t the goal and target in speech(m1), and func-
tions goal and target return the goal and target for which
an evaluation is made.

justify (p, S) A sentence p can be justi�ed, if it is in the current
player's commitment store and the other player challenged
it in a previous move. Formally: let d = di � 1 ; m i and
s = player (m i ), then there is a move m in d, such that
player (m) = s and speech(m) = challenge (p). Further-
more p 2 Cs , S ` Arg p and S 6� Cs .

challenge (p) A sentence p can be challenged, if it is in the other
player's commitment store and the current player has not
previously challenged it. Formally: let d = di � 1 ; m i and
s = player (m i ), then there is no move m in d such that
player (m) = s and speech(m) = challenge (p). Further-
more p 2 Cs .

counter (� 1 , � 2) A priority � 1 can be countered by priority � 2 , if it is in
the other player's commitment store and � 2 is not yet in
the current player's commitment store. Formally: let d =
di � 1 ; m i and s = player (m i ), then � 1 2 Cs , � 2 62Cs and
� 1 ; � 2 2 L P L .

argue ( ) The current player may propose to argue about belief  if
 is in the other player's commitment store and the player
has not previously proposed to argue about  . Formally: let
d = di � 1 ; m i and s = player (m i ), then there is no move m
in d such that speech(m) = argue ( ). Furthermore  2 Cs

and  2 L Bel .
end A player may always choose to end the dialogue after the

�rst move. Formally: d 6= d0

Table 3. The preconditions, in terms of the dialogue, for the various locutions in L C
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De�nition 4 (Protocol function for Dialogues for Recommending Trust).
P r : M < 1 ! 2M de�nes the set of legal moves in a dialogue, and thus by in-
duction de�nes the protocol P of a dialogue. We do this, by �rst de�ning the
preconditions for each of the possible speech acts. These are listed in Table 3. We
de�ne the function pre that, given a speech act, a player and a dialogue, returns
whether the preconditions are true or false. This allows us to de�ne a function
that returns all legal moves, given the dialogue so far:

{ P r (d0) = f (1; Q; request recommendation (t; 
; r ))g
{ P r (d; mi ) = f (i + 1 ; s; lm)j s = player(mi ) ^ lm 2 L C ^ pre(lm; s; d; mi )g

If the persuasion dialogue about argumentation is guaranteed to terminate,
then the dialogue for recommending trust is guaranteed to terminate. The proof
of this is trivial, given that L Arg contains a �nite number of elements and the
protocol guarantees no steps are repeated. It depends, however, on the agents'
choices of the legal moves how fast it reaches a desirable outcome. Such a de-
sirable outcome is furthermore dependent on the agents actually adapting their
trust models when necessary. This is not treated in the actual dialogue: if either
agent receives a trust priority rule as the justi�cation for a priority, it may choose
to add this to its own rule base. This is a choice made outside of the dialogue,
and if this happens then the argumentative theories change. This means the logic
for the current dialogue no longer represents the agents' stances, and therefore
the agent should choose to end the current dialogue. The seeker should restart
with a new request for recommendations. We describe the choices an agent can
make in more detail in [4].

4 Discussion and Conclusions

The protocol we propose is specially designed for a dialogue with the aim to
personalise a trust recommendation. It therefore includes the locutions to counter
a priority with another one, and propose to argue about beliefs that underly a
trust evaluation. These two locutions are the main points of di�erence between
the dialogue we propose and a standard information-seeking dialogue, such as
presented by Prakken [10]. Moreover, we have taken special care to allow agents
to choose what information they disclose.

First, at any point in the dialogue, the agent may choose to end the dialogue.
Unfortunately, this also means that we can give no formal guarantees about
whether a dialogue ends in success or not; an agent may always choose not to
disclose an important piece of information for the adaptation process.

Secondly, the dialogue moves through an argument step-by-step. If a sentence
in the agent's commitment store is challenged, the agent only justi�es it with
the direct reason for believing the sentence: only one node of the argument tree
is unfolded at a time, and the agent may choose to end the dialogue, rather than
disclose the information at any point. These three properties of our dialogue
make it quite di�erent from Pinyol's dialogue protocol [8], which is, insofar as
we know, the only other dialogue protocol speci�cally designed for communi-
cating about trust. Pinyol's dialogue protocol is more reminiscent of one for a
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persuasion dialogue, because each move communicates an entire argumentation
tree and the only legal move is to counter some part of that tree. The dialogue
only ends when an agent can no longer attack the other's arguments, at which
point the recommendation-seeker decides whether or not to accept the trust
recommendation or not.

The dialogue protocol presented in this paper thus improves on the state of
the art in two ways: �rst, it extends existing dialogue protocols speci�cally to
allow for the adaptation of trust models and the communication of personalised
trust recommendations; and second, it allows agents a more �ne-grained control
over how much information they communicate than the only other argumenta-
tion protocol for trust that we know about.
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Abstract. In an e-marketplace populated with a large number of sell-
ers, some of which may be dishonest, the selection of good sellers to do
business with is crucial but challenging especially when buyers do not
have much experience with these sellers. In this paper we introduce the
SALE POMDP, a framework for the seller selection problem that allows
the decision maker to reason both about the quality of the sell ers, as
well as the trustworthiness of the advisors. In particular, t he framework
allows the agent to ask advisors about the trustworthiness of other ad-
visors while still o�ering the bene�t of optimally trading o� information
gathering and exploitation of knowledge as a�orded by a POMDP ba sed
approach. Via this model, we present a preliminary investig ation on the
bene�t of reasoning about trustworthiness of advisors. We al so demon-
strate how this enables incorporation of trust propagation as an integral
part of the decision making process.

Keywords: Seller Selection, E-Marketplace, POMDPs.

1 Introduction

We consider the `seller selection' problem in e-marketplaces, where an agent, the
buyer, is assigned with the task of purchasing a particular item and needs to
decide from which of the agents that o�er the item it should order. In order to
make this decision, the buyer maintains a belief over the quality levels of the
various sellers. Also it can ask peers about their beliefs inorder to improve its
estimate of the quality levels. Only when the buyer is su�ciently sure that it
has identi�ed a seller with su�cient quality, should it go ah ead and order the
item (so the problem includes the decision ofwhether to place an order).

There have been a number of approaches to maintaining Bayesian beliefs
over the quality levels of sellers, by integrating the buyer's own beliefs as well
as the beliefs of other buyers (advisors) [12, 13]. These approaches tend to focus
only on obtaining an accurate estimate of seller quality, but fail to reason about
when it is necessary to query advisors in order to make optimal decisions.

An approach was suggested to perform full Bayesian decisionmaking by cast-
ing the seller selection problem as apartially observable Markov decision process
(POMDP) , named Advisor POMDP [6]. POMDPs provide a generic framework
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for optimal decision making for an agent in a stochastic and partially observable
environment [5]. The advantages of a POMDP approach are as follows: 1) rather
than trying to achieve the most accurate estimate of sellers, the approach tries to
select good sellers and does that optimally; reasoning about sellers is a means,
not an end, and 2) a POMDP approach explicitly reasons about information
gaining actions in partially observable environments, which allows the agent to
optimally trade o� the cost of obtaining and bene�t of more in formation.

However, the Advisor POMDP framework assumes that all advisors are
equally trustworthy. Following other approaches [12, 13],we acknowledge that
it is important to model the trustworthiness of advisors; modeling the trustwor-
thiness of advisors has a big impact on the optimal policy. Wealso believe that
by allowing the buyer to query about (other) advisors we can integrate trust
propagation into the decision making process, and thus improve the approach.

We introduce a new model called the(S)eller & (A)dvisor se(LE)ction POMDP
(SALE POMDP) , which implements these ideas by explicitly incorporating a
model of the advisors' trustworthiness in the state description. By asking advi-
sors about both sellers and other advisors, a SALE POMDP-agent can improve
its belief and subsequently take an informed decision on whether to place an
order and if so from which seller. In this paper, we demonstrate how this belief
revision process works, show that taking into account trustof the advisors is
important in the seller selection problem and that, under certain circumstances,
allowing the agent to ask advisors about other advisors allows it to realize a
higher expected utility for its owner.

2 Background

2.1 Reputation Systems

Some sellers in e-marketplaces may be dishonest and not deliver products with
the quality levels as they promised or declared. Thus, seller selection in such
uncertain environments is important. Reputation systems have been introduced
to address this issue and are particularly useful when buyers do not have much
direct experience with sellers [4]. Among them, Bayesian approaches [12, 13] have
drawn large attention. For example, Teacy et al. [12] proposed the TRAVOS
model, which is a trust and reputation model based on the betaprobability
density function, and integrates a buyer's own beliefs about sellers as well as the
beliefs of advisors. However, these approaches do not provide optimal decision
making for the buyer on whether and from which seller to placean order, which
is exactly what our approach tries to o�er.

Those Bayesian approaches also suggest to model the trustworthiness of ad-
visors as some advisors may lie about their experience with sellers. For example,
[10] proposes to learn about the advisors by trying to estimate the properties of
sellers and using those to estimate the advisor's advice given those properties.
This is on a somewhat di�erent time-scale than our approach.In particular, in
order to learn about an advisor, the agent should �rst have many interactions
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with a seller (to be certain enough about the sellers properties) at that point,
the agent can learn what type of advice the advisor gives for such seller proper-
ties. This means, however, that in order to learn about a single advisor multiple
transactions of both our agent and the advisor with the same seller are required.
In contrast, we hope to be able to learn about advisors by asking other advisors,
thereby avoiding the need to engage in costly transactions.

2.2 The Advisor POMDP

Regan et al. [6] introduced the Advisor POMDP, an approach for dealing with the
seller section problem based on the POMDP framework. Formally, an Advisor
POMDP consists of the following elements:

{ There areI advisors that can be queried about the reputation of allJ sellers.
{ S|a set of possible states of the environment. A state s = hq; sati , where

q 2 [0; 1]J is a vector indicating the quality qj of each seller andsat 2
f� 1; 0; +1g indicates whether the result of a purchase is satisfactory (+1),
unsatisfactory (� 1) or whether no purchase took place yet (0).

{ A |a set of actions. There is one action aski for each advisori , and onebuyj

action for each sellerj .
{ T |a transition function that speci�es Pr( s0js; a), the probability of trans-

fering to a state s0 given that action a was taken in states. For aski actions,
the state does not change. Forbuyj action a state s = hq; 0i changes stochas-
tically to s0 = hq; � 1i or s = hq; +1 i with probabilities depending on qj .

{ R|a reward function specifying R(s; a; s0). For ask actions, a small cost is
paid independent of the state. For transitions to a satis�ed state (i.e., from
sat = 0 to sat = +1) a reward is received, while transitions to an unsatis�ed
state yield a large penalty. Once the state changed to satis�ed or unsatis�ed,
no further rewards are given.

{ 
 |a set of observations o. In the advisor POMDP, the advisors respond
with a tuple o = hrepj ; cf j i J

j =1 that expresses the knowledge of that advisor
about all sellers. Hererepj is the reputation according to the advisor and
cf j is a measure of how certain the advisor is.

{ O|the observation function that speci�es Pr( oja; s). Since the semantics
of the certainty factors are not formalized, there is some freedom in its
speci�cation.

{ b0|the initial state distribution.
{ h|the horizon of the problem. That is the number of time steps, orstages,

for which we want to plan. We will assume that h is in�nite in this paper.

When the agent interacts with the environment, it can maintain a so-calledbelief
b, i.e., a probability distribution over states via Bayes' ru le. That is, when b(s)
speci�es the probability of s (for all s), we can deriveb0 an updated belief after
taking some action a and receiving an observationo. Assuming discrete sets of
states and observations (as we will do in the remainder of thepaper), this update
can be written as follows:

b0(s0) =
Pr(s0; ojb; a)

Pr(ojb; a)
=

1
Pr(ojb; a)

Pr(oja; s0)
X

s

Pr(s0js; a)b(s): (1)
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Here, Pr(ojb; a) is a normalization factor.
These beliefs are the basis for decision making: a policy� maps beliefs to

actions � (b) = a. The goal of solving the POMDP is to �nd an optimal policy
that maximizes the expected discounted cumulative reward,also calledvalue:

V (� ) = E
hh� 1X

t =0


 t R(s; a; s0) j �; b 0
i
; (2)

with 0 � 
 < 1 the discount factor.
Finding an optimal policy � � is intractable in general (PSPACE complete [8]),

however, in recent years substantial advances have been made in the approximate
solution of POMDPs (e.g., [7, 11]).

3 Reasoning about which Advisors to Trust

The Advisor POMDP presents a coherent and principled framework to making
decisions in the seller selection problem. However, there are some limitations to
this model, as we now discuss.

A severe limitation is that the Advisor POMDP puts equal trus t in all the
advisors.4 In a real system it is absolutely not a priori clear that all advisors can
be trusted and we hypothesize that this may have a big impact on how one should
act (i.e., what the optimal policy is). In fact, there is a lar ge �eld of research
on trust propagation that deals with the question of how one should adapt the
trust in peers [3, 2]. A disadvantage of current approaches,however, is that they
deal with the problem of most accurately estimating the trust levels, rather
than integrating this type of reasoning with the decision process of selecting
a seller. As a result, it is not clear how one would actually optimally apply
such approaches in the context of seller selection. Here we try to overcome this
problem by presenting a new model that incorporates these ideas from trust
propagation within a POMDP formulation.

Also, in the Advisor POMDP, each advisor gives its ratings about all the
sellers. However, instead of estimating the quality of all sellers, the only goal
should be to select the seller with high quality. As such, theobservation in
the advisor POMDP may contain a lot of unnecessary information, leading to
unnecessary communication. Therefore we will consider an approach in which
our agent has to indicate about which seller (or other advisor) it wants to ask.

These ideas lead us to the formulation of a new model called the (S)eller
& (A)dvisor se(LE)ction POMDP (SALE POMDP) , which we will formally
introduce in the next section. Section 3.2 will present an example instantiation
of the framework that we use in our experimental evaluation.

4 By using a di�erent observation function it would be possibl e to have observations
from di�erent advisors result in di�erent beliefs, thereby m odeling di�erent levels of
trust. These levels, however, would be assumed known to the agent.
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3.1 The SALE POMDP Model

Like the Advisor POMDP, the SALE POMDP is a sub-class of POMDP prob-
lems. On the one hand the SALE POMDP is more complex than the Advisor
POMDP: we assume that the advisors also have a quality, ortrustworthiness,
and that this is part of the state space. Moreover we introduce extra actions
as we allow the agent to ask about the quality of other advisors. On the other
hand, we make the simplifying assumption of having discretesets of quality
levels, which allows us to use standard POMDP solvers.

Since the SALE POMDP is a POMDP, it can be described in terms ofstates,
actions, observations and rewards.

States. Like in the Advisor POMDP, a state contains the quality level s of all
sellers, however, it also contains the quality, ortrustworthiness, of each advisor.
Let Q be the discrete set of seller quality levels andU be the set of advisor
quality levels. Then, a state is a tuple s = hq; u ; sati , where q 2 Q J is a vector
indicating the quality of each seller, u 2 U I a vector indicating the quality of
each advisor, andsat 2 f� 1; 0; +1g as before. We also writeqj for the j -th
element of q and ui for the i -th element of u . After a buy action is taken, the
decision process ends. This is modeled using sets ofterminal states. That is, a
terminal state is a state wheresat = +1 or sat = � 1. We will think of these sets
of states as single states calledsatis�ed and unsatis�ed.

Actions. The model knows the following types of actions:

{ seller queryij | ask advisor i about seller j ,
{ advisor queryii 0 | ask advisor i about advisor i 0,
{ buyj | buy from seller j .
{ do not buy | decide not to buy from any seller.

Transitions. As in the Advisor POMDP, we assume that when taking a query
action, the state does not change:

8i;j Pr(s0js; seller queryij ) = � ss0; (3)

8i;i 0 Pr(s0js; advisor queryii 0) = � ss0; (4)

where � ss0 is the Kronecker delta that is 1 if and only if s = s0.
When taking a buyj action, the state will always transition to a terminal

state. The transition probabilities to terminal states giv e a de�nition of the
quality levels. In general, chances of transitioning to `satis�ed' should be higher
when buying from higher quality sellers j .

Together, the speci�cations of these transitions imply the assumption that
quality and trust-levels are stationary for the duration of the decision process.

Rewards. The SALE POMDP speci�es the following rewards: A small cost as-
sociated with ask actionsR(s; seller queryij ) = R(s; advisor queryii 0) = Rask , a
reward associated with a good purchaseR(s; buyj ; s0 = hq; u ; sat = +1 i ) = Rsat ,
and a penalty associated with dissatisfactionR(s; buyj ; s0 = hq; u ; sat = � 1i ) =
Runsat . There is a penalty associated with taking thedo not buy action when in
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fact there is a seller of high enough quality (we use� Rsat ), otherwise the reward
for this action is 0.

Observations. When a query action is performed the agent will receive an ob-
servation from the set of discriminated quality levels. That is, after a seller queryij

action, the agent receives an observationo 2 Q corresponding to the quality of
seller j , while after an advisor queryii 0 the agent will get an observation o 2 U
corresponding to the quality of the advisor i 0. When the agent transitions to a
terminal state, it receives the observation `ended'. As such O = Q[U [ f endedg.

As in the Advisor POMDP, there is no a priori correct way to specify the
observation probabilities. In fact, the probabilities picked for the observation
function de�ne the meaning of di�erent trust levels. In general, the idea is that
trustworthy advisors will give more accurate and consistent answers than un-
trustworthy ones.

Initial State Distribution. The initial state distribution is dependent on the
subjective beliefs of the agent (or its owner) when the need for purchasing an
item arises. In the case that nothing is known, it makes senseto start with a
uniform belief over the quality levels, but a di�erent initi al belief could have
resulted from previous interactions.

That is, once the buy action is taken, the resulting belief can be used as the
basis for an initial belief for a new seller selection instantiation. There are two
sources of previous experience: 1) Previous seller selection tasks: the modi�ed
belief state resulting from advice in a previous problem canbe retained, and
2) Actual experiences with sellers: even though in the decision making task we
model a transition to a terminal state with a deterministic ended observation,
the actual order will result in the owner of the agent being satis�ed or not and
this information can be used to update the �nal belief of the agent's previous
seller selection task giving a new initial belief for a new task.5

3.2 Example

Suppose that there areJ = 2 sellers for the item in concern, each of which can
have jQj = 2 quality levels. In this example we useQ = f L; H g for L (ow) and
H (igh) quality. Then we have 2J = 4 possible `quality states' q:

q 2 fh L; L i ; hL; H i ; hH; L i ; hH; H ig: (5)

Also suppose that there areI = 3 advisors, each of which isT(rustworty) or
U(ntrustworty). That is U = f T; Ug. This leads to 2I `trust states' u :

u 2 fh T; T; Ti ; hT; T; Ui ; : : : ; hU; U; Uig: (6)

As such, an example of a fully speci�ed state iss = hhL; H i ; hT; U; Ui ; 0i .
The transition function for the query actions is speci�ed as explained: the un-

derlying state does not change. There is some freedom in specifying the transition
5 In fact this can be an important mechanism to deal with advisor s that are consistent

but deceptive and settings in which the majority of advisors i s untrustworthy.
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ui qj good bad

T H 0:9 0:1
T L 0:1 0:9
U H 0:5 0:5
U L 0:5 0:5

(a) Pr( ojseller queryij ; qj ; ui ) for the pos-
sible observations `good' and `bad'.

ui ui 0 good bad

T T 0:9 0:1
T U 0:1 0:9
U T 0:5 0:5
U U 0:5 0:5

(b) Pr( ojadvisor queryii 0; ui ; ui 0) for the
possible observations `good' and `bad'.

Table 1: Observation probabilities.

probabilities for reaching satis�ed and unsatis�ed, since this encodes the de�ni-
tion of the quality levels. In this example, buying from a high quality seller will
lead to satis�ed with 80% probability: Pr( sat = � 1j hsat = 0 ; qj = L i ; buyj ) =
0:8: Similarly, we will assume that a low quality seller will lead to unsatis�ed
with probability 0 :8.

In our example, we label the two possible observations `good' (i.e., the advi-
sor says that the seller/other advisor is high quality) and b̀ad' (the seller/other
advisor is said to be low quality). As mentioned above, the observation probabil-
ities when transferring to a terminal state are �xed: the agent will observe ended
with probability 1. The observation probabilities for the seller queryij action
(ask advisor i about seller j ) should be such that asking a trustworthy advisor i
gives more accurate observations. One possible way to specify these probabilities
is shown in Table 1a. Similarly, Table 1b shows example observation probabilities
for the advisor queryii 0 action.

4 Experiments

In this section we report upon a �rst empirical investigatio n of the SALE POMDP
model. In particular, we demonstrate how the belief update (1) leads to corre-
lation of particular states which forms the basis of improved decision making.
We also show that in our example setting it is important to explicitly take into
account the advisor's trustworthiness and that asking advisors about other ad-
visors can be bene�cial in certain settings.

In order to perform the empirical evaluation we utilize SARSOP [7], a state-
of-the-art POMDP solver, which reads in problems in a standardized POMDP
description format. SARSOP does not exploit the factored structure of our prob-
lem, therefore, in specifying our models, we substituted all the terminals by two
separate statessatisf ied , unsatisf ied , reducing the number of states. Further-
more, the models we used speci�ed two quality and trust levels as in the example
of Section 3.2. Also, unless noted otherwise, the transition and observation mod-
els used the same parameters as described in that section. For the rewards,
we usedRask = � 1; Rsat = 50; Runsat = � 100. Also, we penalized taking the
do not buy action from states where there was a high quality seller with� 50.
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4.1 Illustration of Belief Update: Correlation between Sta tes

Here we provide some intuition behind the SALE POMDP model by illustrating
the process of belief updating. The basic idea is that the belief updates should
correlate the state factors in meaningful ways. For instance, observinggoodafter
seller queryij should give more weights to states where the seller is high quality
qj = H and the advisor is trustworthy ui = T, and less weights to states where
the seller is low quality qj = L and the advisor is trustworthy ui = U. This
is clearly demonstrated in a number of transitions in Figure 1b, which shows
the policy found for a one seller (J = 1) one advisor (I = 1) SALE POMDP.
Similarly, observing Tj after advisor queryii 0 should put more weight on states
where ui 0 = T and ui = T, and decrease weight on states whereui 0 = U and
ui = T.

4.2 The Impact of Taking into Account Trust

Here we compare (a simpli�ed version of) the Advisor POMDP with one seller
(J = 1) and one advisor (I = 1) to the SALE POMDP model. For both models
we use the same discretization of quality levels (Q = f L; H g), so the only dif-
ference is that the SALE POMDP includes the trustworthiness of the advisor
as a state variable and that the observations are dependent on this factor. The
observation model is as shown in Table 1.

Figure 1 shows the policies found for the two models. It clearly shows that the
policies are qualitatively di�erent. In particular, while in the Advisor POMDP
it is possible to return to the initial belief after observing an equal number of
`good' and `bad' observations. In contrast, in the SALE POMDP this leads to
a belief where the advisor is thought to be untrustworthy. As such, the agent is
able to reason about the trustworthiness of the advisor by repeated interactions.

Since, the Advisor POMDP corresponds to the setting in whichthere is a
single trustworthy advisor, it achieves higher value (meanvalue of 1000 evalu-
tions is 5:36) than the SALE POMDP ( � 8:56). However, the policy found for
the Advisor POMDP with only one untrustworthy advisor (i.e. , with `advice ac-
curacy' 0.5) is much lower (� 19:88). Interestingly, the mean of 5:36 and � 19:88
(� 7:26) corresponds to the setting where when an advisor type is chosen with
50% probability and then revealed to the agent. We see that the SALE POMDP
achieves value fairly close to this `oracle' upper bound.

4.3 Multiple Advisors: Trust Propagation

We also hypothesize that allowing the agent to query advisors about other ad-
visors, thereby integrating a form of trust propagation in t he seller selection
decision procedure, can allow for further improvements. Inorder to test this
hypothesis, we consider the SALE POMDP framework with threeadvisors and
compare it to a baseline model: the same SALE POMDP model but without
the advisor queryii 0 actions, which we will call the NoAQ model. The top row
of Table 2 lists the results of this comparison. In contrast to our expectation,

74



75



76



77



78



79



80



81



82



83



84



85



86



87



88



89



90



91



92



93


