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Abstract

This paper provides an analysis of the efficacy of a known
iterative improvement meta-heuristic approach from the AI
area in solving the Blocking Job Shop Scheduling Problem
(BJSSP) class of problems. The BJSSP is known to have
significant fallouts on practical domains, and differs from the
classical Job Shop Scheduling Problem (JSSP) in that it as-
sumes that there are no intermediate buffers for storing a job
as it moves from one machine to another; according to the
BJSSP definition, each job has to wait on a machine until it
can be processed on the next machine. In our analysis, two
specific variants of the iterative improvement meta-heuristic
are evaluated: (1) an adaptation of an existing scheduling
algorithm based on the Iterative Flattening Search and (2)
an off-the-shelf optimization tool, the IBM ILOG CP Opti-
mizer, which implements Self-Adapting Large Neighborhood
Search. Both are applied to a reference benchmark problem
set and comparative performance results are presented. The
results confirm the effectiveness of the iterative improvement
approach in solving the BJSSP; both variants perform well
individually and together succeed in improving the entire set
of benchmark instances.

Introduction
Over the past decades, several extensions of the classical job
shop problem have been proposed in the literature. One such
extension is the so-called job shop with blocking constraints
or Blocking Job Shop Scheduling Problem (BJSSP). The
BJSSP is a particularly meaningful problem as it captures
the essence of a range of practical applications. It differs
from the classical Job Shop Scheduling Problem (JSSP) in
that it assumes that there are no intermediate buffers for stor-
ing a job as it moves from one machine to another. Accord-
ing to the BJSSP definition, each job has to wait on the ma-
chine that has just processed it until it can be processed on
the next machine; the objective remains that of minimizing
makespan.

The BJSSP actually relates fairly strongly to automated
manufacturing trends and systems that have emerged in re-
cent years. Modern manufacturing firms tend to adopt lean
manufacturing principles and design production lines with
minimal buffering capacity in order to limit inventory costs
(Mati, Rezg, and Xie 2001). Yet, one of the continuing ob-
stacles to effective use of emerging flexible manufactur-
ing system (FMS) technologies is the difficulty of keep-

ing heterogeneous jobs moving continuously through con-
stituent work stations in a way that maximizes throughput.
The BJSSP formulation is also relevant in other application
contexts. The core model of many railway scheduling prob-
lems, for example, is also similar to the blocking job-shop
problem (Mascis and Pacciarelli 2002; Strotmann 2007).

Despite its practical relevance, the BJSSP has received
relatively little attention in comparison to the traditional
JSSP, and none from the Artificial Intelligence (AI) re-
search community. The idea behind this paper is to perform
an initial analysis of the efficacy of a known iterative im-
provement meta-heuristic approach from the AI area in solv-
ing the BJSSP and, in doing so, expose this problem as a
target for future research. To this end, we adapt an existing
iterative improvement scheduling algorithm based on Itera-
tive Flattening Search (IFS) to the BJSSP and evaluate its
performance on a reference BJSSP benchmark problem set.
Given the strong results produced by IFS, we also perform
some preliminary testing with the IBM ILOG CP Optimizer
(CP-OPT), an off-the-shelf optimization tool that implements
another variant of iterative improvement search. An initial
comparative analysis is presented toward the objective of
encouraging future experimentation with other AI planning
and scheduling techniques on this reference BJSSP bench-
mark and more generally on this important class of problem.

IFS was first introduced in (Cesta, Oddi, and Smith 2000)
as a scalable procedure for solving multi-capacity schedul-
ing problems. Extensions to the original IFS procedure were
made in two subsequent works (Michel and Van Henten-
ryck 2004; Godard, Laborie, and Nuitjen 2005) and more
recently the works (Oddi et al. 2011; Pacino and Henten-
ryck 2011) have applied the same meta-heuristic approach
to successfully solve very challenging instances of the Flex-
ible Job Shop Scheduling problem described in (Mastrolilli
and Gambardella 2000). The IFS variant that we propose
here relies on a core constraint-based search procedure as
the BJSSP solver. This procedure generates consistent or-
derings of activities requiring the same resource by imposing
precedence constraints on a temporally feasible solution, us-
ing variable and value ordering heuristics that discriminate
on the basis of temporal flexibility to guide the search. We
extend both the procedure and these heuristics to take into
account BJSSP’s features.

In solving the BJSSP, the iterative improvement ap-



proach generally, and the adapted IFS procedure specifically,
are found to be quite effective. The IFS variant succeeds
in significantly improving the current best known results
(Groeflin and Klinkert 2009; Groeflin, Pham, and Burgy
2011) on the reference benchmark (improving 37 of 40 in-
stances), and on one problem instance achieves the theoret-
ical minimum. When coupled with the results produced by
the CP-OPT variant, the entire set of benchmark instances
is improved. Overall, the results substantially strengthen the
state-of-the-art on this problem. As a side effect, the analy-
sis also confirms the versatility of the IFS technology in both
the problem representation and solving phases.

The paper is organized as follows. The following sec-
tion defines the BJSSP problem and provides a brief sur-
vey of existing approaches in the literature. The core of
the paper is contained in the next three sections, which re-
spectively describe the basic CSP representation, our core
constraint-based search procedure and the IFS optimization
meta-heuristic. An experimental section then describes the
performance of both the IFS and CP-OPT algorithms on the
reference benchmark and summarizes important character-
istics. Some conclusions end the paper.

The Scheduling Problem
The BJSSP entails synchronizing the use of a set of ma-
chines (or resources) R = {r1, . . . , rm} to perform a set of
n activities A = {a1, . . . , an} over time. The set of activi-
ties is partitioned into a set of nj jobs J = {J1, . . . , Jnj}.
The processing of a job Jk requires the execution of a strict
sequence of nk activities ai ∈ Jk and cannot be modified.
Each activity ai has a processing time pi and requires the
exclusive use of a single resource r(ai) = ri ∈ R for its
entire duration. No preemption is allowed.

The BJSSP differs from the classical Job Shop Sched-
uling Problem (JSSP) in that it assumes that there
are no intermediate buffers for storing a job Jk =
{a1, . . . , ai, ai+1, . . . , ank} as it moves from one machine
to another. Each job has to wait on a given machine until it
can be processed on the next machine. Hence, each activity
ai ∈ Jk is a blocking activity and remains on the machine
r(ai) until its successor activity ai+1 starts. Due to the above
described blocking features characterizing the BJSSP, the
two following additional constraints must hold for activities
belonging to the same job Jk. Let the variables si and ei
represent the start and end time of ai ∈ Jk :

1. ei = si+1, i = 1 . . . nk − 1. This synchronization con-
straint enforces the action that a job is handed over prop-
erly from ai to the following ai+1 in Jk. Hence, the start-
ing time si+1 (i.e., the time when the job enters the ma-
chine r(ai+1)) and the end time ei (i.e., the time when the
job leaves the machine r(ai)) must be equal. According
to the usual BJSSP formulation, for each activity ai we
make the assumption that there is both an instantaneous
take-over step, coinciding with si and an instantaneous
hand-over step, coinciding with ei.

2. ei − si ≥ pi. The total holding time of the activity ai
on the machine ri in the solution is greater or equal to

the activity processing time pi, as we have to consider an
additional waiting time due to the blocking constraints.

A solution S = {s1, s2, . . . , sn, } is a set of assigned
start times si that satisfy all of the above constraints. Let
Ck be the completion time for the job Jk. The solution
makespan is the greatest completion time of all jobs, i.e.,
Cmax = max1≤k≤nj{Ck}. An optimal solution S∗ is a so-
lution S with the minimum value of Cmax.

It should be underscored that in this work we consider the
swap version of the BJSSP problem. The need to swap op-
erations between machines is incurred if a set of blocking
operations exists where each one is waiting for a machine
occupied by another operation in the set. Thus, the only so-
lution to this deadlock situation (caused by the blocking re-
striction) is that all operations of the set can swap to their
next machine simultaneously, so that all corresponding suc-
cessor operations can start at the same time. Note that in
a BJSSP the last operations of all jobs are non-blocking.
Moreover, swapping makes no sense for the last operations
of jobs as they leave the system after their completion. It has
been demonstrated that the swap BJSSP problem tackled in
this work is NP-complete (Strotmann 2007).

In general, solving scheduling problems with blocking
constraints is more difficult than solving the classical job
shop. In fact, though each feasible partial JSSP solution
always admits a feasible complete schedule, given a par-
tial BJSSP feasible solution (with swaps allowed), the lat-
ter admits a feasible complete schedule only from the so-
called positional selections (a special class of feasible partial
schedules) (Mascis and Pacciarelli 2002). On the contrary,
the same problem is NP-complete if swapping of operations
is not allowed (Mascis and Pacciarelli 2002).

Existing Approaches
Job shop models with blocking constraints have been dis-
cussed by several authors. (Hall and Sriskandarajah 1996)
gives a survey on machine scheduling problems with block-
ing and no-wait constraints (a no-wait constraint occurs
when there exists a maximum temporal separation between
the start times of two consecutive operations in a job). In
(Mascis and Pacciarelli 2002) the authors analyze several
types of job shop problems including the classical job shop,
the Blocking Job Shop, with and without “swaps”, (note that
in this work we tackle the swap BJSSP version) and the no-
wait job shop; the authors then formulate these problems by
means of alternative graphs. They also propose three spe-
cialized dispatching heuristics for these job shop problems
and present empirical results for a large set of benchmark
instances. Recently, the work (Groeflin and Klinkert 2009)
has introduced a tabu search strategy for solving an extended
BJSSP problem including setup times, and successive work
(Groeflin, Pham, and Burgy 2011) has proposed a further ex-
tension of the problem that also considers flexible machines.
To the best of our knowledge, (Groeflin and Klinkert 2009)
and (Groeflin, Pham, and Burgy 2011) also provide the best
known results for the BJSSP benchmark used in this work,
hence they provide the reference results for our empirical
analysis.



A CSP Representation
There are different ways to model the problem as a Con-
straint Satisfaction Problem (CSP) (Montanari 1974). In this
work we use an approach similar to (Mascis and Paccia-
relli 2002), which formulates the problem as an optimiza-
tion problem on a generalized disjunctive graph called an
alternative graph. In particular, we focus on imposing sim-
ple precedence constraints between pairs of activities that
require the same resource, so as to eliminate all possible re-
source usage conflicts.

Let G(AG, J,X) be a graph where the set of vertices AG

contains all the activities of the problem together with two
dummy activities, a0 and an+1, representing the beginning
(reference) and the end (horizon) of the schedule, respec-
tively. Each activity ai is labelled with the resource ri it
requires. J is a set of directed edges (ai, aj) representing
the precedence constraints among the activities (job prece-
dences constraints), each one labelled with the processing
times pi of the edge’s source activity ai.

The set of undirected edges X represents the disjunctive
constraints among the activities that require the same re-
source; in particular, there is an edge for each pair of activ-
ities ai and aj requiring the same resource r, labelled with
the set of possible ordering between ai and aj , ai � aj or
aj � ai. Hence, in CSP terms, a set of decision variables
oijr is defined for each pair of activities ai and aj requiring
the same resource r. Each decision variable oijr can take one
of two values ai � aj or aj � ai. As we will see in the next
sections, the possible decision values for oijr can be repre-
sented as the following two temporal constraints: ei−sj ≤ 0
(i.e. ai � aj) or ej + sj ≤ 0 (i.e. aj � ai).

To support the search for a consistent assignment to the
set of decision variables oijr, for any BJSSP we define the
directed graph Gd(V,E), called distance graph, which is an
extended version of the graph G(AG, J,X). In Gd(V,E),
the set of nodes V represents time points, where tp0 is the
origin time point (the reference point of the problem), and
for each activity ai, si and ei represent its start and end time
points respectively. The set of edges E represents all the im-
posed temporal constraints, i.e., precedences and durations.
In particular, each edge (tpi, tpj) ∈ E with label b repre-
sent the linear constraint tpj − tpi ≤ b. For example, the
constraint ei − si ≥ pi on the activity ai is represented by
the edge (ei, si) with label −pi. The graph Gd(V,E) repre-
sents a Simple Temporal Problem (STP) and its consistency
can be efficiently determined via shortest path computations
(Dechter, Meiri, and Pearl 1991).

Basic Constraint-based Search
The proposed procedure for solving instances of BJSSP
integrates a Precedence Constraint Posting (PCP) one-shot
search for generating sample solutions and an Iterative Flat-
tening meta-heuristic that pursues optimization. The one-
shot step, similarly to the SP-PCP scheduling procedure
(Shortest Path-based Precedence Constraint Posting) pro-
posed in (Oddi and Smith 1997), utilizes shortest path in-
formation in Gd(V,E) to guide the search process. Shortest
path information is used in a twofold fashion to enhance the

search process: to propagate problem constraints and to de-
fine variable and value ordering heuristics.

Propagation Rules

The first way to exploit shortest path information is by intro-
ducing a set of Dominance Conditions, through which prob-
lem constraints are propagated and mandatory decisions for
promoting early pruning of alternatives are identified. The
following concepts of slack(ei, sj) and co-slack(ei, sj)
(complementary slack) play a central role in the definition
of such new dominance conditions.

Given two activities ai, aj and the shortest path distance
distance d(tpi, tpj) on the graph Gd, according to (Dechter,
Meiri, and Pearl 1991), we have the following definitions:

– slack(ei, sj) = d(ei, sj) represents the maximal distance
between ai and aj (i.e., between the end-time ei of ai and
the start-time sj of aj), and therefore provides a measure
of the degree of sequencing flexibility between ai and aj
1. If slack(ei, sj) < 0, then the ordering ai � aj is not
feasible.

– co-slack(ei, sj) = −d(sj , ei) represents the minimum
possible distance between ai and aj ; if co-slack(ei, sj) ≥
0, then there is no need to separate ai and aj , as the sepa-
ration constraint ei ≤ sj is already satisfied.

For any pair of activities ai and aj that are competing for
the same resource r, the dominance conditions describing
the four possible cases of conflict are defined as follows:

1. slack(ei, sj) < 0 ∧ slack(ej , si) < 0
2. slack(ei, sj) < 0 ∧ slack(ej , si) ≥ 0 ∧ co-slack(ej , si) < 0
3. slack(ei, sj) ≥ 0 ∧ slack(ej , si) < 0 ∧ co-slack(ei, sj) < 0
4. slack(ei, sj) ≥ 0 ∧ slack(ej , si) ≥ 0

Condition 1 represents an unresolvable conflict. There is
no way to order ai and aj without inducing a negative cy-
cle in the graph Gd(V,E). When Condition 1 is verified the
search has reached an inconsistent state.

Conditions 2, and 3, alternatively, distinguish uniquely re-
solvable conflicts, i.e., there is only one feasible ordering of
ai and aj , and the decision of which constraint to post is
thus unconditional. If Condition 2 is verified, only aj � ai
leaves Gd(V,E) consistent. It is worth noting that the pres-
ence of the condition co-slack(ej , si) < 0 implies that the
minimal distance between the end time ej and the start time
si is smaller than zero, and we still need to impose the con-
straint ej − si ≤ 0. In other words, the co-slack condition
avoids the imposition of unnecessary precedence constraints
for trivially solved conflicts. Condition 3 works similarly,
and implies that only the ai � aj ordering is feasible.

Finally, Condition 4 designates a class of resolvable con-
flicts; in this case, both orderings of ai and aj remain feasi-
ble, and it is therefore necessary to perform a search deci-
sion.

1Intuitively, the higher the degree of sequencing flexibility, the
larger the set of feasible assignments to the start-times of ai and aj



PCP(Problem, Cmax)
1. S ← InitSolution(Problem, Cmax)
2. loop
3. Propagate(S)
4. if UnresolvableConflict(S)
5. then return(nil)
6. else
7. if UniquelyResolvableDecisions(S)
8. then PostUnconditionalConstraints(S)
9. else begin
10. C ←ChooseDecisionVariable(S)
11. if (C = nil)
12. then return(S)
13. else begin
14. vc← ChooseValueConstraint(S, C)
15. PostConstraint(S, vc)
16. end
17. end
18. end-loop
19. return(S)

Figure 1: The PCP one-shot algorithm

Heuristic Analysis
The second way of exploiting shortest path information is by
defining variable and value ordering heuristics for the deci-
sion variables oijr in all cases where no mandatory decisions
can be deduced from the propagation phase. The basic idea
is to repeatedly evaluate the decision variables oijr and se-
lect the one with the minimum heuristic evaluation. The se-
lection of which variable to assign next is based on the most
constrained first (MCF) principle, and the selection of val-
ues follows the least constraining value (LCV) heuristic, as
explained below.

As previously stated, slack(ei, sj) and slack(ej , si) pro-
vide measures of the degree of sequencing flexibility be-
tween ai and aj . The variable ordering heuristic attempts
to focus first on the conflict with the least amount of se-
quencing flexibility (i.e., the conflict that is closest to previ-
ous Condition 1). More precisely, the conflict (ai, aj) with
the overall minimum value of

V arEval(ai, aj) =
1√
S
min{slack(ei, sj), slack(ej , si)}

where S =
min{slack(ei,sj),slack(ej ,si)}
max{slack(ei,sj),slack(ej ,si)}

2, is always se-
lected for resolution.

In contrast to variable ordering, the value ordering heuris-
tic attempts to resolve the selected conflict (ai, aj) simply
by choosing the precedence constraint that retains the high-
est amount of sequencing flexibility. Specifically, ai � aj
is selected if slack(ei, sj) > slack(ej , si) and aj � ai is
selected otherwise.

2The
√
S bias is introduced to take into account cases where

a first conflict with the overall min{slack(ei, sj), slack(ej , si)}
has a very large max{slack(ei, sj), slack(ej , si)}, and a second
conflict has two shortest path values just slightly larger than this
overall minimum. In such situations, it is not clear which conflict
has the least sequencing flexibility.

The PCP Algorithm
Figure 1 gives the basic overall PCP solution procedure,
which starts from an empty solution (Step 1) where the
graphs Gd is initialized according to the previous section (A
CSP Representation). The procedure also accepts a never-
exceed value (Cmax) of the objective function of interest,
used to impose an initial global makespan to all the jobs.

The PCP algorithm shown in Figure 1 analyses all pairs
(ai, aj) of activities that require the same resource (i.e., the
decision variables oijr of the corresponding CSP problem),
and decides their values in terms of precedence ordering
(i.e., ai � aj or aj � ai, see previous section), on the basis
of the response provided by the dominance conditions.

In broad terms, the procedure in Figure 1 interleaves the
application of dominance conditions (Steps 4 and 7) with
variable and value ordering (Steps 10 and 14 respectively)
and updates the solution graph Gd (Steps 8 and 15) to con-
duct a single pass through the search tree. At each cycle,
a propagation step is performed (Step 3) by the function
Propagate(S), which propagates the effects of posting
a new solving decision (i.e., a constraint) in the graph Gd.
In particular, Propagate(S) updates the shortest path dis-
tances on the graph Gd. We observe that within the main
loop of the PCP procedure shown in Figure 1, new con-
straints are added incrementally (one-by-one) to Gd, hence
the complexity of this step is in the worst caseO(n2). For the
present analysis, we have adapted the incremental All Pair
Shortest Path algorithm proposed in (Ausiello et al. 1991),
as it guarantees that only the interested part of the temporal
network is affected by each propagation.

A solution is found when the PCP algorithm finds a fea-
sible assignment to the activity start times such that all re-
source conflicts are resolved (i.e., all decision variables orij
are fixed and the imposed precedence constraints are sat-
isfied), according to the following proposition: A solution
S is found when none of the four dominance conditions is
verified on S (Oddi and Smith 1997). At this point, each
subset of activities Ar requiring the same resource r is to-
tally ordered over time and the Gd graph represents a con-
sistent Simple Temporal Problem. Moreover, as described
in (Dechter, Meiri, and Pearl 1991), one possible solution to
the problem is the so-called earliest-time solution, such that
Sest = {Si = −d(si, tp0) : i = 1 . . . n}

The Optimization Metaheuristic
Figure 2 introduces the generic IFS procedure. The algo-
rithm basically alternates relaxation and flattening steps un-
til a better solution is found or a maximal number of non-
improving iterations is reached. The procedure takes three
parameters as input: (1) an initial solution S; (2) a posi-
tive integer MaxFail, which specifies the maximum num-
ber of consecutive non makespan-improving moves that the
algorithm will tolerate before terminating; (3) a parame-
ter γ explained in the following section. After initializa-
tion (Steps 1-2), a solution is repeatedly modified within the
while loop (Steps 3-10) by applying the RELAX procedure
(as explained below), and the PCP procedure shown in Fi-
gure 1 is used as flattening step. At each iteration, the RE-



IFS(S,MaxFail, γ)
begin
1. Sbest ← S
2. counter ← 0
3. while (counter ≤MaxFail) do
4. RELAX(S, γ)
5. S ←PCP(S,Cmax(Sbest))
6. if Cmax(S) < Cmax(Sbest) then
7. Sbest ← S
8. counter← 0
9. else
10. counter← counter + 1
11. return (Sbest)
end

Figure 2: The IFS schema

LAX step reintroduces the possibility of resource contention,
and the PCP step is called again to restore resource feasibil-
ity. If a better makespan solution is found (Step 6), the new
solution is saved in Sbest and the counter is reset to 0. If
no improvement is found within MaxFail moves, the algo-
rithm terminates and returns the best solution found.

Relaxation Procedure
The first keystone of the IFS cycle is the relaxation step,
wherein a feasible solution is relaxed into a possibly re-
source infeasible but precedence feasible schedule, by re-
tracting some number of scheduling decisions. In this phase
we use a strategy similar to the one employed in (Godard,
Laborie, and Nuitjen 2005) called chain-based relaxation.
The strategy starts from a solution S and randomly breaks
some total orders (or chains) imposed on the subset of activ-
ities requiring the same resource r. The relaxation strategy
requires an input solution as a graph GS(A, J,XS) which
is a modification of the original precedence graph G that
represents the input scheduling problem. GS contains a set
of additional general precedence constraints XS that can be
seen as a set of chains. Each chain imposes a total order on
a subset of problem activities requiring the same resource.

The chain-based relaxation procedure proceeds in two
steps. First, a subset of activities ai is randomly selected
from the input solution S; the selection process is gener-
ally driven by a parameter γ ∈ (0, 1) whose value is related
to the probability that a given activity will be selected (γ is
called the relaxing factor). Second, a procedure similar to
CHAINING – used in (Policella et al. 2007) – is applied to
the set of unselected activities. This operation is in turn ac-
complished in three steps: (1) all previously posted solving
constraintsXS are removed from the solution S; (2) the uns-
elected activities are sorted by increasing earliest start times
of the input solution S; (3) for each resource r and for each
unselected activity ai assigned to r (according to the increas-
ing order of start times), ai’s predecessor p = pred(ai, r)
is considered and a precedence constraint related to the se-
quence p � ai is posted (the dummy activity a0 is the first
activity of all chains). This last step is iterated until all the
activities are linked by the correct precedence constraints.
Note that this set of unselected activities still represents a
feasible solution to a scheduling sub-problem, which is rep-
resented as a graph GS in which the randomly selected ac-

tivities float outside the solution and thus may generally re-
create conflicts in resource usage.

As anticipated above, we implemented two different
mechanisms to perform the random activity selection pro-
cess, respectively called Random and Slack-based.

Random selection According to this approach, at each
solving cycle of the IFS algorithm in Figure 2, a subset of
activities ai is randomly selected from the input solution S.
The γ value represents the percentage of activities that will
be relaxed from the current solution, and every activity re-
tains the same probability to be selected for relaxation.

Slack-based selection As opposed to random selection
where at each iteration every activity is potentially eligi-
ble for relaxation, the slack-based selection approach re-
stricts the pool of relaxable activities to the subset contain-
ing those activities that are closer to the critical path con-
dition (the activities on the critical path are those that de-
termine the schedule’s makespan). The rationale is that re-
laxing activities in the vicinity of the critical path should
promote more efficient makespan reductions. For each ac-
tivity ai we define two values: 1) the duration flexibil-
ity dfi = d(ei, si) + d(si, ei), representing the flexibility
to extend the duration of activity ai without changing the
makespan; and 2) the waiting time wi = −d(si, ei) − pi,
representing the minimal additional time that activity ai re-
mains blocked on the requested machine r(ai) with respect
to the processing time pi. For BJSSP, we consider that both
dfi and wi play a role in determining an activity’s proxim-
ity to the critical path condition, which is therefore assessed
by combining these two values into a parameter called du-
ration slack dsi = dfi + wi. An activity ai is chosen for
inclusion in the set of activities to be removed on a given
IFS iteration with probability directly proportional to the γ
parameter and inversely proportional to ai’s duration slack
dsi Note that for identical values of the relaxation parame-
ter γ, the slack-based relaxation generally implies a smaller
disruption to the solution S, as it operates on a smaller set
of activities; those activities characterized by a large slack
value will have a minimum probability to be selected.

Experimental Analysis
In this section, we present quantitative evidence of the effec-
tiveness of the above described iterative improvement algo-
rithms on a previously studied BJSSP benchmark. Our anal-
ysis proceeds in two steps. First, we perform a detailed com-
parison of the performance of various IFS configurations.
Second we evaluate the performance of the IBM ILOG CP
Optimizer (IBM Academic Initiative 2012), which makes
use of a different iterative improvement search procedure,
and add these results to the overall performance compari-
son. In both cases we observe a substantial improvement in
performance relative to the current state-of-the-art, demon-
strating both the versatility and the robustness of the iterative
improvement approach.



Experimental Setup
We have performed extensive computational tests on a set
of 40 Blocking Job Shop (BJSSP) benchmark instances
obtained from the standard la01-la40 JSSP testbed pro-
posed by Lawrence (Lawrence 1984). These problems are
directly loaded as BJSSP instances, by imposing the ad-
ditional constraints as described in Section (The Schedul-
ing Problem). The 40 instances are subdivided into the fol-
lowing 8 (nJ × nR) subsets, where nJ and nR represent
the number of jobs and resources, respectively: [la01-la05]
(10× 5), [la06-la10] (15× 5), [la11-la15] (20× 5), [la16-
la20] (10×10), [la21-la25] (15×10), [la26-la30] (20×10),
[la31-la35] (30× 10), and finally [la36-la40] (15× 15).

As stated earlier, in order to broaden the analysis of
the performance of existing constraint-based approaches we
performed further experiments on the same benchmarks us-
ing the IBM ILOG CP Optimizer (CP-OPT). CP-OPT imple-
ments the approach described in (Laborie and Godard 2007)
called Self-Adapting Large Neighborhood Search (SA-LNS).
Similarly to IFS, SA-LNS is a randomized iterative improve-
ment procedure based on the cyclic application of a relax-
ation step followed by a re-optimization step of the relaxed
solution. In SA-LNS, both steps may generally vary between
any iteration, according to a learning algorithm which per-
forms the self adaptation.

To keep the experiments conditions as equal as possible to
those of previously published results, the time limit for each
run was set to 1800 sec. The IFS algorithm variants were
implemented in Java and run on a AMD Phenom II X4 Quad
3.5 Ghz under Linux Ubuntu 10.4.1. The CP-OPT Optimizer
was instead run on the same machine under Windows 7.

Comparing IFS results with current bests
Table 1 and Table 2 show the performance of the IFS solv-
ing procedure using each of the two selection strategies ex-
plained above, Random Relaxation and the Slack-based Re-
laxation, respectively. In Tables 1 and 2, the inst. column
lists all the benchmark instances according to the follow-
ing criteria: instances in bold are those that have been im-
proved with respect to the current best, while the bold under-
lined instances represent improvements with respect to their
counterparts in the other table, in case both solutions im-
prove the current best. The most recent known results avail-
able in literature to the best of our knowledge are shown
in the best column of both tables. These numeric values
have been obtained by intersecting the best results presented
in (Groeflin and Klinkert 2009) and (Groeflin, Pham, and
Burgy 2011), as they represent the most recent published re-
sults for BJSSP instances. The remaining 8 columns of Ta-
ble 1 present the best result obtained for each instance as the
γ retraction parameter value ranges from 0.1 to 0.8, while
Table 2 exhibits the same pattern as γ ranges between 0.2
and 0.9. For each instance, bold values represent improved
solutions with respect to current bests (relative improve-
ments), while bold underlined values represent the best val-
ues obtained out of all runs (absolute improvements). Val-
ues marked with an asterisk correspond to theoretical op-
tima found by (Mascis and Pacciarelli 2002), specifically,

the la19 instance, with γ = 0.8 (see Table 1). For all in-
stances, the best out of 2 different runs was chosen. In both
tables, all (nJ × nR) activity subsets have been interleaved
with specific rows (Av.C.) presenting the average number of
{relaxation - flatten} cycles (expressed in thousands) per-
formed by our procedure to solve the subset instances for
each γ value. The first value of the last row (# impr.) shows
the total number of absolute improvements with respect to
the current bests out of all runs, while the remaining values
represent such improvements for each individual value of γ.

Table 1: Results with random selection procedure

inst. best γ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

la01 820 907 859 865 850 857 818 818 793
la02 793 854 848 858 815 826 793 793 793
la03 740 787 773 770 721 715 740 740 715
la04 764 810 802 770 761 756 766 756 743
la05 666 776 761 689 680 671 664 680 664
10x5 Av.C. 143K 124K 109K 95K 83K 79K 85K 98K
la06 1180 1234 1165 1182 1196 1151 1087 1121 1177
la07 1084 1188 1130 1114 1102 1087 1046 1070 1127
la08 1125 1212 1152 1157 1105 1097 1107 1087 1100
la09 1223 1294 1308 1240 1241 1251 1235 1226 1212
la10 1203 1287 1224 1243 1232 1110 1127 1167 1179
15x5 Av.C. 47K 39K 35K 30K 26K 26K 27K 28K
la11 1584 1726 1516 1588 1498 1566 1536 1635 1672
la12 1391 1554 1512 1370 1358 1290 1272 1463 1429
la13 1541 1673 1614 1523 1465 1479 1482 1638 1657
la14 1620 1766 1649 1590 1556 1610 1594 1665 1729
la15 1630 1779 1682 1576 1527 1564 1586 1692 1789
20x5 Av.C. 19K 16K 14K 12K 10K 11K 10K 10K
la16 1142 1278 1165 1134 1170 1168 1106 1086 1151
la17 977 1184 1130 1025 997 1076 930 995 986
la18 1078 1182 1214 1154 1040 1132 1081 1082 1049
la19 1093 1145 1193 1127 1176 1127 1104 1053 1043*
la20 1154 1228 1170 1229 1173 1161 1142 1074 1099
10x10 Av.C. 29K 25K 22K 21K 19 20K 19K 18
la21 1545 1742 1731 1678 1587 1530 1688 1724 1808
la22 1458 1653 1523 1468 1455 1494 1485 1593 1651
la23 1570 1851 1695 1626 1531 1597 1553 1728 1795
la24 1546 1740 1584 1675 1503 1517 1631 1675 1696
la25 1499 1618 1552 1670 1545 1437 1562 1660 1666
15x10 Av.C. 8K 8K 6K 6K 5K 5K 5K 5K
la26 2125 2230 2249 2265 2109 2320 2410 2434 2437
la27 2175 2385 2355 2267 2172 2427 2661 2642 2667
la28 2071 2287 2211 2027 2162 2449 2456 2529 2571
la29 1990 2379 1988 2047 2108 2100 2296 2301 2427
la30 2097 2266 2218 2162 2095 2146 2437 2442 2482
20x10 Av.C. 3K 3K 3K 2K 2K 2K 2K 2K
la31 3137 3422 3175 3213 3745 3848 3913 3876 3933
la32 3316 - 3336 3673 3963 4057 4127 4158 4157
la33 3061 3315 3147 3252 3521 3710 3816 3800 3960
la34 3146 3273 3267 3479 3526 3827 3904 3919 3924
la35 3171 - 3148 3654 3718 3881 3882 3871 3882
30x10 Av.C. 0.6K 0.7K 0.6K 0.6K 0.5K 0.5K 0.4K 0.5K
la36 1919 2155 2096 1793 1973 2241 2097 2322 2223
la37 2029 2165 2037 2167 2004 2034 2270 2445 2386
la38 1828 2091 1931 1775 1852 1839 2070 2090 2059
la39 1882 2108 2074 1914 1783 1828 1884 2064 2110
la40 1925 2207 1914 1831 2036 1884 2125 2068 2246
15x15 Av.C. 3K 2K 2K 2K 2K 2K 2K 1K
# impr. 35 0 2 4 13 4 5 4 6

The results in Tables 1 and 2 show that both the Ran-
dom and the Slack-based relaxation procedure exhibit re-
markably good performance in terms of number of abso-
lute improvements (35 and 34, respectively, on a total of
40 instances), despite the fact that the Slack-based approach
allows a fewer number of solving cycles within the allot-
ted time, due to the more complex selection process. This
circumstance is even more remarkable once we highlight
that the quality of the improved solutions obtained with the
slack-based relaxation is often higher than the quality ob-
tained with the random counterpart; it is enough to count
the number of the bold underlined instances in both tables



Table 2: Results with the slack-based selection procedure

inst. best γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

la01 820 829 794 884 793 793 818 818 793
la02 793 858 814 837 793 793 814 793 793
la03 740 798 761 754 740 715 740 715 715
la04 764 770 756 756 776 743 743 743 743
la05 666 723 704 693 664 679 671 664 664
10x5 Av.C. 126K 112K 97K 90K 84 80K 85K 90K
la06 1180 1170 1158 1148 1112 1076 1064 1123 1138
la07 1084 1180 1099 1088 1081 1079 1038 1075 1063
la08 1125 1205 1172 1132 1135 1062 1087 1113 1150
la09 1223 1304 1290 1283 1257 1228 1185 1205 1238
la10 1203 1174 1197 1141 1158 1181 1119 1159 1146
15x5 Av.C. 40K 35K 32K 29K 26K 25K 27K 27K
la11 1584 1670 1582 1559 1501 1466 1604 1621 1664
la12 1391 1383 1367 1345 1321 1296 1309 1295 1452
la13 1541 1583 1480 1515 1471 1498 1520 1514 1623
la14 1620 1610 1596 1577 1567 1575 1548 1628 1696
la15 1630 1702 1612 1629 1547 1606 1551 1566 1753
20x5 Av.C. 17K 14K 12K 11K 11K 10K 10K 10K
la16 1142 1173 1186 1208 1086 1108 1119 1084 1086
la17 977 1095 1063 1036 1000 974 951 930 967
la18 1078 1141 1038 1040 1120 1090 1026 1026 1026
la19 1093 1207 1122 1109 1077 1082 1076 1077 1068
la20 1154 1211 1165 1156 1166 1122 1141 1087 1094
10x10 Av.C. 24K 23K 21K 19K 19K 19K 19K 19K
la21 1545 1762 1689 1618 1521 1572 1696 1771 1712
la22 1458 1541 1504 1486 1490 1425 1546 1551 1635
la23 1570 1639 1595 1554 1538 1538 1681 1736 1694
la24 1546 1690 1547 1538 1498 1544 1518 1548 1682
la25 1499 1495 1547 1527 1424 1557 1501 1574 1688
15x10 Av.C. 7K 7K 6K 6K 6K 5K 5K 5K
la26 2125 2180 2045 2117 2179 2292 2395 2420 2437
la27 2175 2233 2176 2104 2172 2427 2661 2642 2667
la28 2071 2287 2211 2104 2132 2352 2500 2476 2649
la29 1990 2049 2004 2010 1963 2163 2305 2300 2389
la30 2097 2109 2156 2135 2125 2419 2460 2492 2485
20x10 Av.C. 3K 3K 2K 2K 2K 2K 2K 2K
la31 3137 3078 3271 3500 3771 3899 3888 3863 3941
la32 3316 3428 3827 4045 3852 4158 4064 4157 4152
la33 3061 3372 3213 3436 3741 3717 3896 3949 3970
la34 3146 3328 3125 3752 3796 3917 3935 3929 3933
la35 3171 3243 3274 3631 3818 3822 3875 - -
30x10 Av.C. 0.6K 0.6K 0.6K 0.6K 0.5K 0.5K 0.4K 0.5K
la36 1919 1916 1938 1939 1891 2010 2004 2283 2199
la37 2029 2172 2055 1984 1983 2004 2179 2227 2396
la38 1828 1798 1894 1849 1708 1854 2088 1995 2121
la39 1882 1918 1872 1806 1848 1862 2136 2141 2161
la40 1925 1917 1777 1849 1831 1992 2108 2048 2195
15x15 Av.C. 3K 2K 2K 2K 2K 2K 2K 2K
# impr. 34 1 3 2 22 7 7 7 6

to confirm that the slack-based relaxations outperforms the
random relaxations on 20 improved solutions, while the op-
posite is true in 11 cases only. This difference in efficacy
is further confirmed by the higher number of relative im-
provements obtained with the slack-based approach, i.e.,
129 against 80 (these last figures are not explicitly shown
in the tables).

Regarding the relation between solution quality and γ val-
ues, the following can be observed. Regardless of the chosen
selection procedure, both approaches tend to share the same
behavior: as the γ value increases, the effectiveness of the
solving procedure seems to increase until reaching a maxi-
mum, before showing the opposite trend. Indeed, we observe
that the highest number of absolute improvements in both ta-
bles is obtained with γ = 0.4 and γ = 0.5 in the random and
slack-based case, respectively.

The obtained results also seem to convey that there ex-
ists a relation between the most effective γ value and the
size of the instance. In particular, it can be observed that
smaller instances generally require a greater relaxation fac-
tor, while bigger instances are best solved by means of small
relaxations. This circumstance is verified in both tables; the

instances belonging to the [la1-la20] are best solved within
the [0.5, 0.9]γ range, while the best solutions to the [la21-
la40] instances are found within the [0.2, 0.4] range.

Table 3: Comparison with the results obtained with CP-OPT

inst. best cp ifs inst. best cp ifs inst. best cp ifs
la01 820 793 793 la15 1630 1571 1527 la29 1990 1898 1963
la02 793 815 793 la16 1142 1150 1084 la30 2097 2147 2095
la03 740 790 715 la17 977 996 930 la31 3137 2921 3078
la04 764 784 743 la18 1078 1135 1026 la32 3316 3237 3336
la05 666 664 664 la19 1093 1108 1043 la33 3061 2844 3147
la06 1180 1131 1064 la20 1154 1119 1074 la34 3146 2848 3125
la07 1084 1106 1038 la21 1545 1579 1521 la35 3171 2923 3148
la08 1125 1129 1062 la22 1458 1379 1425 la36 1919 1952 1793
la09 1223 1267 1185 la23 1570 1497 1531 la37 2029 1952 1983
la10 1203 1168 1110 la24 1546 1523 1498 la38 1828 1880 1708
la11 1584 1520 1466 la25 1499 1561 1424 la39 1882 1813 1783
la12 1391 1308 1272 la26 2125 2035 2045 la40 1925 1928 1777
la13 1541 1528 1465 la27 2175 2155 2104
la14 1620 1506 1548 la28 2071 2062 2027

Adding CP-OPT to the comparison
Table 3 compares the results obtained with the IFS and the
CP-OPT procedures against the current bests. In particular,
the table lists all the problem instances (inst. column) and
for each instance it compares the current best (best column)
with the CP-OPT bests (cp column) and with the IFS bests
(ifs column). The CP-OPT results are obtained running the
solver once for every instance, using the default search pa-
rameters in (IBM Academic Initiative 2012). In the table,
bold underscored figures represent the absolute best values
obtained between IFS and CP-OPT.

If we compare the previous results with those related to
the CP-OPT solver, we notice that the latter performs excep-
tionally well, given that the CP-OPT results are compared
against the merged best results obtained in Tables 1 and 2,
and that all CP-OPT runs have been performed only once.
In this regard, it should be noted how CP-OPT succeeds in
improving 25 of the 40 total instances with respect to the
current bests, in its first attempt. These results indicate the
effectiveness of the iterative improvement solving approach
to the BJSSP class of problems tackled in this work, regard-
less whether it is implemented through IFS or SA-LNS.

As a last observation, it should be noted how the per-
formance of IFS is affected by the size of the problem in
terms of average number of solving cycles. In Table 1, for
example, we pass from an average of≈ 120K cycles for the
(10× 5) instances down to an average of ≈ 0.5K cycles for
the (30×10) instances. This same effect is observable in Ta-
ble 2. Indeed, this aspect represents the most important lim-
itation of IFS, even more in comparison to the performance
of CP-OPT. In the IFS case, if reasoning over an explicit rep-
resentation of time on the one hand provides a basis for very
efficient search space cuts by means of propagation, it can
on the other hand become a bottleneck as the problem size
increases. This limitation is confirmed by the lower quality
results obtained for the [la31-la35] subset, where IFS ran-
dom (slack-based) selection is able to improve only 1 (resp.
2) of 5 solutions. In contrast, the problem instances with the
highest concentration of CP-OPT improvements with respect
to IFS are the larger sized problems, which highlights the
higher efficiency of the SA-LNS procedure implemented in



CP-OPT when the size of the problem increases beyond a
certain threshold. Yet, despite the IFS limitation highlighted
above, it can be observed that the overall solution quality
remains acceptable at least for one γ value, which indicates
that IFS is characterized by a rather good converging speed.

Conclusions and Future Work
In this paper we have proposed the use of iterative improve-
ment search to solve the Blocking Job Shop Scheduling
Problem (BJSSP). The BJSSP represents a relatively un-
studied problem of practical real-world importance, and one
goal of this paper has been to raise awareness of this prob-
lem class within the AI research community.

Two different iterative improvement algorithms have been
evaluated: (1) Iterative Flattening Search (IFS) (adapted
from (Oddi et al. 2011)), and (2) Self-Adapting, Large
Neighborhood Search (SA-LNS) ((Laborie and Godard
2007)) as it is implemented in the IBM ILOG CP Opti-
mizer. Experimental results on a reference BJSSP bench-
mark problems demonstrated the general efficacy of both al-
gorithms. Both variants were found to produce very good
results with respect to the currently published best known
results. Overall, new best solutions were found for the entire
benchmark problem set, and in one case the known theoret-
ical optimum value was achieved. With respect to the two
individual approaches, SA-LNS was found to exhibit better
scaling properties while IFS achieved better results on prob-
lem instances of medium and smaller size. Our hypothesis
is that this behavior is due to the more specific heuristic em-
ployed in IFS in comparison to the general search strategy
provided in the default implementation of the SA-LNS al-
gorithm. Given the generality and versatility of both proce-
dures, we believe that one immediate extension of the cur-
rent work can be towards the JSSP with Limited Capacity
Buffers ((Brucker et al. 2006)).
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