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Abstract

Typical solutions for agents assessing trust relies
on the circulation of information on the individual
level, i.e. reputational images, subjective experi-
ences, statistical analysis, etc. This work presents
an alternative approach, inspired to the cognitive
heuristics enabling humans to reason at a categorial
level. The approach is envisaged as a crucial ability
for agents in order to: (1) estimate trustworthiness
of unknown trustees based on an ascribed mem-
bership to categories; (2) learn a series of emer-
gent relations between trustees observable proper-
ties and their effective abilities to fulfill tasks in sit-
uated conditions. On such a basis, categorization
is provided to recognize signs (Manifesta) through
which hidden capabilities (Kripta) can be inferred.
Learning is provided to refine reasoning attitudes
needed to ascribe tasks to categories. A series of ar-
chitectures combining categorization abilities, indi-
vidual experiences and context awareness are eval-
uated and compared in simulated experiments.

1 Introduction

Open agent systems are characterized by heterogenous agents
with their own goals which are assumed to join and leave
the system. This produces multiple interactions each with
possibly uncertain context conditions and unpredictable out-
comes. Crucial abilities for agents are in this case to au-
tonomously decide how to coordinate activities and to del-
egate or not tasks to other agents. Trust based interactions
have been proposed as a suitable model in order to effec-
tively achieve goals jointly: agents capable to assess trust-
worthy interactions have better chances to reduce the risk of
failures and to promote desirable outcomes. The problem of
trust management is, for agents, a problem of trust forma-
tion. Indeed, assessing trust leads agents to the need to ana-
lyze multiple information sources along several dimensions.
Two main approaches to trust formation exist: they refer to
subjective experiences and reputation respectively, and their
effectiveness presents a series of benefits and drawbacks as
showed for instance in [Fullam and Barber, 2007]. Subjec-
tive experiences are typically exploited in evaluating the out-
comes of previous transactions [Littman and Stone, 2001],

but they are limited by the need of multiple and repeated
interactions with the same agents. Besides, reputational
reports are exploited to establish trustworthy interactions
with possibly unknown counterparts [Yu and Singh, 2002;
Sabater, 2003; Huynh et al., 2006; Fullam and Barber, 2007;
Burnett et al., 2010]. The downside here is the need of a
network of reputation providers, being each reputational in-
formation possibly corrupted by biased reporters.

This work refunds the problem of trust formation in open
and dynamic systems by combining subjective experiences
and reputation with the use of abstract categories and catego-
rial reasoning. The proposed approach is inspired by a heuris-
tics commonly exploited by humans, that is the cognitive abil-
ity to represent the society through categories of individuals
grouped by common features and capabilities. Thanks to a
process of ascription, considering a unknown agent as be-
longing to a known category allows a cognitive agent to infer
(or at least attribute) specific internal features for such un-
known agent. On this basis, to determine how that agent will
perform in specific situations. In this sense, the model recalls
the notions of Krypta and Manifesta [Bacharach and Gam-
betta, 2001], according to which agents’ manifesta are sig-
nals, or observable traces, recalling agents’ krypta, which are
the internal properties (qualities, abilities or powers) finally
determining agents’ behaviors on specific tasks and contexts.
The aim of this work is also to exploit multiple information
sources to inform trust formation. Categorial reasoning is
exploited in order to infer hidden information from observ-
able features, thus easing the delegation process as well as
the decisions needed to establish trustworthy interactions. At
the same time, subjective knowledge and reputation (coming
from subjective or collective experiences, as in [Littman and
Stone, 2001; Yu and Singh, 2002]) as well as context aware-
ness (treated by appraising situated conditions, as in [Tavako-
lifard et al., 2008]) are also considered in a coherent computa-
tional model. In doing so, the paper proposes task delegation
as a trust based decision making, integrating individual, cate-
gorial and situated reasoning. Section 2 describes categorial
reasoning in a cognitive approach to trust; Section 3 formal-
izes the problem domain, describing agent abstract architec-
ture; Section 4 presents different approaches for categorial
reasoning; Section 5 evaluates the models with comparative
experiments; finally, Section 6 concludes the paper with final
remarks and perspectives.
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2 Trusting Categories of Agents

The suggestion to exploit categorial knowledge to assess trust
in open systems is not new, and it has been theoretically ex-
plored for ascertaining beforehand the trustworthiness of pos-
sible unknown counterparts [Barber, 1983]. In the context of
computational models, the work by Wojcik et al. introduced
the notion of prejudice filters to perceive particular trustees
attributes [2006]. Rules are extracted to avoid distrusted inter-
actions, thus denying transactions which may be expected as
not profitable. The Stereotrust approach proposed by Brunett
et al. allows agents to build stereotypes based on the analysis
of outcomes of past interactions [2010]. This mechanism is
inspired by data mining techniques to be applied by trustors
over the database of past interactions. Categories emerge as
clusters of agents, grouped by similar transaction outcomes.

The approach proposed in this paper relies on the more
general theory of socio-cognitive trust [Castelfranchi and Fal-
cone, 2010], according to which trust is a notion appraised by
agents in terms of cognitive ingredients. Cognitive trust is
treated as a relational construct between a trustor (agi) and
a trustee (agj) which can be established in a given environ-
ment/context E, and, most important, about a defined activ-
ity or task to be fulfilled (τ ): Trust(agi, agj , E, τ). Trust is
then a graded construct which trustors (trust givers) ascribe
to trustees (trust receivers). The degree of trust (DoT ) comes
from a series of cognitive primitives, which can be summa-
rized in terms of beliefs and goals. Summing up, an agent
agi trusts agj about a task τ and in the conditions E, if DoT
overcomes a given threshold σ:

DoTagj ,E,τ > σ

In a group of possible trustees, we assume the trustor will
prefer the one having the higher DoT .

Besides the personal level of analysis related to the features
of a single, known trustee, the socio cognitive model includes
the use of categories to estimate the behavior of a group of
unknown trustees. We here refer to categorial reasoning as
the heuristic adopted by cognitive agents (i) to recognize to
which extent a given category is suitable for a given task, and
(ii) to delegate the task to the trustee better fitting the ascribed
category. The categories to which a given trustee belongs
can be inferred on the basis of a set of information readable
over agents’ observable features. Such observable proper-
ties are the signs indicating trustees’ unobservable properties,
namely the internal states which finally determines their ac-
tual behavior. In doing so, the overall informational structure
can be divided in observable and non observable (manifesta
and krypta according the model in [Bacharach and Gambetta,
2001]). However, in assigning a category to a given trustee,
the trustor is assumed to ignore the trustee’s real krypta.

3 Reasoning with Categories

In order to provide a practical taste of the approach, in what
follows we refer to categories, tasks, activities inspired to the
medical domain.

Categories are assumed as belonging to three different be-
havioral attitudes. Professional categories refer to the prag-
matic abilities to bring about goals in a given task. Examples

Chickenpox
Abilities
pediatr spec 99
manual 90
literature 80
technique 90
Dispositions
availability 90
caution 80
attention 70
Cross
female true

Pediatrician
Professional
pediatr spec: [99 . . . 100]
manual: [70 . . . 100]
literature: [60 . . . 100]
technique: [70 . . . 100]

Careful
Dispositional
caution: [80 . . . 100]
attention: [90 . . . 100]
availability: [40 . . . 60]

Female
Crosscutting

Table 1: Example of task (left) and categories (right).

of these are pediatrician, surgeon, dentist, oncologist, etc.
Dispositional categories refer to the attitudes of willingness
in performing activities: Examples are cautious, careful, im-
pulsive, etc. Finally, Crosscutting categories consider aspects
which can not be considered in the above mentioned ones, for
instance being male, female, religious, atheist, etc. Each cat-
egory is specified by a record of features, shaped on concrete
dimensions and range of values.

We model a set of tasks τ ∈ T , each task being identified
by a couple (action, goal) where the goal is associated to a
particular action to be fulfilled. Tasks are specified by a list
of practical requirements that agents performing the related
actions have to comply with in terms of categories.

Table 1 shows an example of representation for tasks and
categories as they will be adopted in the rest of this work.
The task specification includes the list of professional, dispo-
sitional, crosscutting requirements needed by agents to fulfill
it. These requirements are identified by threshold values to
which agents abilities must comply with. For instance, in
order to achieve the chickenpox task, a trustee must have in-
ternal abilities (krypta) greater than the ones specified in the
task (Table 1 left). Category specifications are identified by
a set of features and the relative range of values. Agents be-
longing to a given category can be assumed to have krypta
in the specified range, for instance a pediatrician is supposed
to have a manual ability between 70 and 100, a pediatr spec
between 99 and 100, and so on.

Each professional category, according to the modeled
problem domain, is shaped on the requirements specified for
a given task (see Table 1). For instance, the Pediatrician cat-
egory is related to the chickenpox task by means of the pedi-
atr spec requirement. The outcome resulting from the execu-
tion of a given task is calculated as a function of the actual
krypta owned by the executor agent. Krypta are compared
with the thresholds specified by the task. The fulfillment
value on the task is calculated using a simple matchmaking
function—omitted here for simplicity.

Alg. 1 shows the abstract script of the categorial reasoning
for an agent assessing trust. Given a task τ ∈ T , trustor’s
goal consists in delegating the task after having perceived
the environmental conditions E. A configuration phase is
possibly exploited through the config function, which is as-
sumed to feed the categorizer module φτ with the trustee
manifesta mnf(agj), analysis of past interactions Exp and
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Algorithm 1 Trustor abstract delegation process
Agent Internal State :

Others : Belief set storing the potential trustees actually in the MAS.
Exp : Belief set storing experiences of past delegations.

procedure delegate(τ, E)

1: for each (agj ∈ Others) do

2: φτ = configτ (mnf(agj), Exp,E)

3: DoTagj,τ
= trust-eval(φτ )

4: if (DoTagj,τ
≥ σ) then

5: Ltrustees = Ltrustees ∪ 〈agj , DoTagj,τ
〉

6: end if

7: end for

8: trustee agent = argmaxagj
(DoTagj,τ

∈ Ltrustees)

9: send(trustee agent, achieve, τ )

situated conditions E. The degree of trust DoT is calculated
for each agent agj present in the system (line 3). If DoTagj
overcomes a given threshold σ, agj is added to the list of
possible trustees (line 5). Finally, the trustee with the highest
DoT is chosen for delegation (lines 8-9). Once the delega-
tion outcome is received, the result is added to the history of
individual experiences Exp.

The crucial element for trust formation is represented by
the trust-eval function (line 3): different models could be
approached in practice to implement such a function, taking
into account categorical, subjective and environmental infor-
mation sources.

4 Approaches for Categorial Trust

In the previous sections, we defined the categorization as
key capabilities for a trustor operating in open and dynamic
systems. Globally, the proposed approach to trust evalua-
tion takes into account categorial knowledge, personal experi-
ences and environmental factors For modeling this in compu-
tationally terms, several options are available, ranging from
linear, non-recursive functions up to non-linear, recursive
models and regression models. In what follows, we discuss
three different approaches: Neural Networks, Data Mining
and Fuzzy Cognitive Maps.

4.1 Neural Networks

Neural networks (NNs) are largely adopted tools for learning
patterns from data, as they provide an effective anticipatory
function quantitatively modeling I/O relations. NNs can be
used as a predictor function on the agent’s trustworthiness,
thus translated as a reliable DoT expectation. Specifically for
categorial trust, a NN is: (i) trained on the collection of past
experiences, and (ii) used for assessing trust of new unknown
agents. trust-eval is thus implemented by agents referred as
Neural with a 2-layer perceptron. The input of the NN are:
the task τ , the environmental conditions E and agent agj’s
manifesta. The output value is the performance prediction
for agj on τ , namely DoTagj ,τ .

4.2 Data Mining

Data mining-based categorial trust has been recently pro-
posed by [Burnett et al., 2010] in terms of stereotypical trust.
The model adopts stereotypes as patterns for recognizing

Trust

Internal Factors External Factors

0.1 / 0.11.0 / 0.1

WillingnessAbilitiesExperience

1.0 / 0.0 0.5 / 0.2

0.5 / 0.5

0.5 / 0.2

Crosscutting
Categories

0.5 / 0.5Professional
Categories

Dispositional
Categories

1.0 / 0.5 1.0 / 0.5

1.0 / 1.0 1.0 / 1.0
Pediatrician

Oncologist

Surgeon

1.0 / 1.0
1.0 / 1.0

1.0 / 1.0

Male Female

Cautious

Careful

Impulsive

1.0 / 1.0

1.0 / 1.0
1.0 / 1.0

Concept i

Concept j

wi,j / ui.j

Figure 1: UnFCM implementing socio-cognitive trust
trustworthy agents and associating them an expected DoT .
Following this structure, a Stereotrust agent has been im-
plemented and performs categorial reasoning in three phases:
(i) stereotypes rise from generalization of past experiences
and are built using data mining and machine learning tech-
niques; (ii) if direct experiences of past interaction with the
same trustee are available, then DoT is the average of the pre-
vious delegation results; (iii) otherwise, given trustee’s man-
ifesta and environmental conditions, stereotypes are applied
as a filter to determine to which cluster the trustee belongs,
thus finding the relative DoT . When a Stereotrust agent has
stored an amount of experiences on the same task, it identifies
some patterns for recognizing clusters of performers, thus as-
sociating them some appraised DoT based on previous dele-
gation results. In Alg. 1, such a process is summarized by the
configτ (Exp,E). Differently from NNs, the data mining ap-
proach brings the advantage to generate explicit classification
rules. In the concrete implementation, experiences are clus-
tered in 10 bin by equal frequency binning. A decision tree
classifier, representing the element φτ in Alg. 1, is obtained
using the C4.5 algorithm1.

4.3 Fuzzy Cognitive Maps

Fuzzy Cognitive Map (FCM) [Kosko and Burgess, 1998] is a
computing technique successfully applied in several domains
for modeling knowledge-based systems. FCM is conceived as
a graph that models a causal processes by means of concepts
and causal relations. The causal impact between two concepts
is qualitatively graded by the connection weight ranging in
the interval [-1,1]. The value on each concept is iteratively
calculated by the weighted sum of the incoming connections,
then squeezed by the node activation function f , until conver-
gence is reached on the whole map:

Ai(t) = f(
n∑

j=1

wj,i ∗Aj(t− 1))

Differently from NN, FCM exhibits a layout designed by do-
main experts using an off-line setting. At design time, do-
main experts identify the relevant concepts of the problem

1The WEKA software [WEKA] is adopted for NN and data min-
ing algorithms suite. Further details on the programming model and
experimental results are available at mindraces-bdi.sf.net.
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Algorithm 2 Forward Propagation with Uncertainty
Variables :

Lr : learning rate M : momentum
Targetx,p : target value of output node x on the pattern p
V aluex,p : value of node x on the pattern p

procedure updateWeights(accuracy, epochs)

1: repeat

2: for ALL patterns p do

3: for ALL output nodes j, input nodes i do

4: Errori(t) =
√∑

(Targetj,p − V aluej,p)2

5: end for

6: for ALL the connections from node h to node k do

7: Learn = Lr ∗ Errorh(t) ∗ V alueh,p(t)

8: Δh,k(t) = Learn ∗ uh,k + (M ∗ Δh,k(t − 1))

9: wh,k(t) = wh,k(t − 1) + Δh,k(t)

10: end for

11: end for

12: until Error(t) < accuracy or t > epochs

and quantitatively establish their mutual influences, through
weighted connections. Nonetheless, in complex domains, de-
signing an optimal FCM model is troublesome. Both uncer-
tainty and ignorance may affect the FCM functioning. Ex-
perts could not be able to recognize all the mutual influences
between concepts, or similarly they could ignore their exact
grade. In order to bridge this gap, a learning method for an
adaptive, online FCM model has been envisaged.

Uncertainty-driven Learning for FCM

FCM learning is not new and many algorithms have been pro-
posed, based either on supervised and unsupervised learning
[Papageorgiou et al., 2006]. We here introduce a novel su-
pervised model, based on the notion of uncertainty. We de-
fine UnFCM as an extension of the traditional FCM struc-
ture aimed at modeling the uncertainty affecting the causal
relationship between concepts. We define the degree of un-
certainty: uh,k ∈ [-1, 1] as the fuzzy value associated to
the weight of the connection wh,k linking the nodes h and
k. Alg. 2 shows the learning procedure that exploits such a
degree of uncertainty to update the weights of the causal links
in the UnFCM. Alg. 2 follows a feed-forward error propaga-
tion structure: when the map reaches convergence, the error is
calculated as the Euclidean distance of the output nodes from
the desirable values on the given pattern (rows 3–5). The er-
ror is placed on the input nodes (row 3) and then propagated
through the network, according to the combination of weights
and uncertainty (rows 6–10).

Learning FCM agents (LFCM) utilize the UnFCM illus-
trated in Figure 1 as cognitive trust module φτ . This partic-
ular structure is shaped on the socio-cognitive model of trust
[Castelfranchi and Falcone, 2010], according to which trust
rises from a particular configuration of mental attitudes, as
expressed by trustors’ beliefs and goals related to the trustee
behavior. In our setting the nodes adopts an identity activa-
tion function and Trust is the output concept. The two main
contributions to trust are characterized as external and in-
ternal factors. Internal factors (i-factors) are related to the
internal characterization of the trustee, as believed by the
trustor. Two child nodes of i-factors related to the categorial
knowledge are considered—thus summing up trustor’s beliefs
about professional abilities and dispositions. The categorial

nodes refer to particular agent’s beliefs as specified by the
adopted socio-cognitive model of trust: Bel(Canagj (τ)), that
is trustor belief that agj is potentially able to fulfill τ , and
Bel(Willagj (τ)), that is trustor belief that agj is potentially
willing and persistent in achieving τ . Ability and disposition
concepts are then respectively linked to a list of nodes digest-
ing the impact of professional, dispositional and crosscutting
categories on the task (see Section 2). Leafs linked to each
of the categorial nodes represent the result of perception of
trustees’ manifesta (Figure 1 shows only three categories for
brevity). The i-factor node is also linked to the node Experi-
ence which is a digest of the personal knowledge of past in-
teractions with the same trustee. External factors (e-factors)
summarize the perception of the environmental context E in
which each trustee is assumed to operate. This concept is the
third constituent belief of the socio-cognitive model, namely
Bel(ExtFactagj (τ)) indicating the set of external conditions
influencing the task τ to be executed by agj .

Figure 1 also shows the weights of the connection (the left
side number) which is used by the UnFCM learning. In par-
ticular, the weights of the links between the leafs and the
categorial nodes assume a pivotal importance for categorial
reasoning: they express the potential impact of the single cat-
egories on the task requirements, thus providing a quantita-
tive measure of how the single categories fit the task exe-
cution. Based on the explicit knowledge of both tasks and
categories, a function ascribe can be realized as an inter-
nal capability of the cognitive trustor to find such a catego-
rial relationship. For instance, having the representation in
Table 1, a matchmaking algorithm may find the possible rela-
tionship between the categorial profile 〈Pediatrician, Careful,
Female〉, and the task chickenpox. In Alg. 1, ascribe is part
of the configτ (Exp,E).

Finally, the degree of uncertainty is defined by design over
the levels of the map taking into account the decreasing level
of abstraction. Thereby, uncertainty is set to 1.0 for the cate-
gorial nodes, 0.5 for professional, dispositional and crosscut-
ting category nodes, 0.2 for ability and willingness nodes and
0.1 for i- and e-factors nodes. The experience connection has
null uncertainty as we assume direct experience (when avail-
able) dominates the categorial reasoning, therefore this link
will remain unchanged throughout the learning phases.

5 Experimental Evaluation

The evaluation of the proposed approaches is discussed in this
section through experimental analysis. We created a simu-
lated agent society in a medical domain, with 100 trustees
randomly selected from a repository of 2500 trustee profiles.
The agents profiles have 5 professional, 6 dispositional and
2 crosscutting categories. A set of trustors, with subjective
trust evaluation models, interacts with the trustee population
over a number of rounds. At each round, trustor’s goal is
to delegate the assigned task to the best trustee available in
the current population. We used chickenpox as example of
task (see Table 1), for which the best categorial profile is sup-
posed to be 〈pediatrician, cautious, female〉. The outcome
of trustee execution is referred in terms of score, calculated
through a matchmaking comparing trustees krypta with task
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Figure 2: Score chart (a) and error charts (b,c) for different trustors approaches.

Professional Categories Cross Categories Dispositional Categories
Agents Surgeon Oncologist Pediatrician female male Cautious Impulsive Careful
LFCM 1, 0/.09 1.0/− .3 1.0/.99 1.0/.52 1.0/.48 1.0/.9 1.0/0.0 1.0/.58
Informed LFCM .37/.01 .42/.01 .83/.98 1.0/.52 1.0/.48 .67/.65 .33/.0 .67/.24
Deceptive LFCM .63/− .06 .58/.05 .17/.88 1.0/.51 1.0/.49 .33/.64 1.0/− .04 .33/.21

Table 2: Initial and final learned weights of the categorial links for different FCM configurations for the task Chickenpox.

requirements (the fulfillment function is omitted).
The prediction error for the trustor’s evaluation model is

defined as the distance of the predicted DoT from the real
delegation outcome: error = |DoTagj −score|. Experiment
setting also takes into account the environmental influences,
defined as a ρ parameter which indicates the contribution of
situated conditions to the final score. Hence, task execution
may receive a subjective influence randomly distributed in the
range [−ρ,+ρ]. An indication of openness is given by the pa-
rameter δ, which determines the number of trustees replaced
at each round. Finally, a learning interval L sets the number
of rounds after which the trustors update their learning model
over the new experiences history. In the adopted configura-
tion, we assumed ρ = δ = 5 and L = 10. The results are
mediated by averaging 20 repeated trials of 150 rounds each.

Delegation Effectiveness

Trustors’ approaches are evaluated through the effective-
ness in delegating the task to the best performer. Fig-
ure 2 (a) shows the trends of the absolute score for Neural,
Stereotrust, LFCM agents. It is noticeable a learning phase,
that characterizes agents for different intervals. Neural agent
learns for ∼ 40 rounds, before stabilizing on a mean score of
∼.95 (the best among the evaluated agents). Neural finally
shows a strong effectiveness in both categorizing agents and
in anticipating the delegation result. Neural’s prediction error
assumes a complementary trend and reaches < .1 accuracy
after ∼32 rounds and resists throughout population changes.
Stereotrust agent globally shows comparable performance,
although both its score and prediction error never reach a
complete stabilization: error trend is irregular and guarantees
only < .2 accuracy. In fact, the main risk for this agent is
that classification stereotypes not always adhere to the popu-
lation features. Under variable environmental influence, clus-
ters built on the delegation history might be wrongly assorted
leading the agent to follow poor delegations. LFCM does

not gain the best absolute score (∼.85) but clearly presents
the shorter learning phase: it reaches < .1 accuracy after
16 rounds, resulting 20% more efficient than Neural2. The
socio-cognitive structure of the UnFCM integrates the three
information levels (personal, categorial and environmental)
while learning refines the balance between the information
sources. The strength of the LFCM approach is to prune the
set of possible trustees according the categorial profile fitting
to the task, considerably easing the delegation process.

Learning Categorial Impacts

The second experiment analyzes the effects of the UnFCM
initial configuration on the categorial learning. Using the
function ascribe (described in Subsection 4.3), we can define
an Informed LFCM where the weight of link for a general
category Cat, with respect to the task τ , is computed as: as-
cribe(Cat,τ ). For instance, as indicated in Table 2, the weight
of the connection linking the node Pediatrician to the node
Professional Categories, for the task Chickenpox, is set to as-
cribe(Chickenpox,Pediatrician) = 0.83. Dually, we define a
Deceptive LFCM that uses a misleading distribution of cat-
egorial weights. In particular, its weights are set to the com-
plementary value of ascribe. For instance, the connection
between Pediatrician and Professional Categories is set to
the weight: (1− ascribe(Chickenpox,Pediatrician)) = 0.17.
In Figure 2 (c) the prediction errors of these two new models
are compared against Informed LFCM.

In Table 2 the initial and the final weights of some catego-
rial links are reported. As a first result, all the three models
converge on equivalent configuration of weights showing that
the category profile 〈pediatrician, cautious, female〉 is dom-
inant for the task chickenpox. Differences are noticeable in
the learning phases. As expected, Informed LFCM, which

2This result was found to be statistically significant by t-test, with
p < .05.
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exploit the additional knowledge of the ascribe function, is
able to start from < .2 accuracy error and its learning phase
lasts in only 6 rounds. Conversely, Deceptive LFCM is af-
fected by misleading knowledge and is forced to experience
a large number of trustees, spending ∼50 rounds in the learn-
ing phase. Notwithstanding, it finally minimize the error and
attains < 0.1 prediction accuracy.

5.1 Discussion

We pointed out with these examples, the pivotal role of the
information sources for reasoning in categorial terms. All the
evaluated trust formation approaches were able to perform
task delegation based on categorial trust attribution. Catego-
rial evidence with respect to the ongoing tasks emerge with
different dynamics from each trust model, without requiring
any initial categorial beliefs. The ability of learning to which
extent the single categories fit for a given tasks drastically en-
hance decision-making and is the base of the emergence of
categorial knowledge.

LFCM model attains particular relevance and is worth to be
analyzed in more detail. The FCM manages heterogeneous
information sources, ranging from personal experiences, to
manifesta and external influences, into a single function. In
addition, LFCM is able to exploit initial categorial knowledge
to boost up its learning features. Thanks to these learning
abilities, categories can be revised, or devised from scratch,
considering growing personal experiences and the concrete
conditions encountered by agents in real domains. Differ-
ently from Neural and Stereotrust, a LFCM is further able
to maintain the semantic of influences between concepts and
their connections. This is a pivotal knowledge, and it is ex-
plicitly readable from the concepts and the causal links inside
the FCM (as in Table 2).

6 Conclusion and Perspectives

As experimental evaluation points out, categorial reasoning,
combined with the analysis of experiences and context aware-
ness, provides an effective way to deal with trust formation in
dynamic and open systems. Using categories allows agents
to abstract form the personal level: delegation is independent
of the composition of the population, it is resistant to muta-
tions and replacements, and it also benefits of having reduced
categorial information instead of extensive individual experi-
ence. As an additional contribute, a comparative analysis of
different mechanisms aimed at learning relationships between
tasks and categories has been studied, and a novel approach
to FCM learning has been presented. Learning allows either
to refine decision making, i.e., better anticipating delegation
outcomes, either to learn categories form experience. As a
remarkable result, system openness can be tackled by agents
abstracting from the personal level, with the support of cate-
gorial reasoning.

Limitations of the current approach pave the way to future
work. To evaluate the scalability of the proposed approach,
applications in different domain will be devised. Accord-
ingly, a seamless integration between the deliberative mod-
ules and the cognitive mechanisms adopted for trust forma-
tion will be be studied at an architectural level.
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