Coordinating Space Telescope
Operations in an Integrated Planning
and Scheduling Architecture

Nicola Muscettola, Stephen F. Smith, Amedeo Cesta, and Daniela D’Aloisi

The Heuristic Scheduling Testbed System
(HSTS) is a software architecture for in-
tegrated planning and scheduling. The ar-
chitecture has been applied to the problem of
generating observation schedules for the Hubble
Space Telescope. This problem is representative
of the class of problems that can be addressed:
their complexity lies in the interaction of
resource allocation and auxiliary task expansion.
The architecture deals with this interaction by
viewing planning and scheduling as two
complementary aspects of the more general
process of constructing behaviors of adynamical
system. Here, the principal components of the
software architecture are described indicating
how to model the structure and dynamics of a
system, how to represent schedules at multiple
levels of abstraction in the temporal data base,
and how the problem solving machinery
operates. The paper then discusses a scheduler
for the detailed management of Hubble Space
Telescope operations that has been developed
within HSTS. Experimental performance
results are given that indicate the utility and
practicality of the approach.

Presented at the 1991 IEEE International
Conference on Robotics and Automation,
Sacramento, CA, April 7-12, 1991. This work
was partly supported by the National
Aeronautics and Space Administration under
Contract NCC 2-531 and the Robotics In-
stitute. A. Cesta was supported by a scholar-
ship of the Italian National Research Council.
D. D’Aloisi carried out her work under an
agreement between the Italian P.T. Ad-
ministration and the Fondazione Ugo Bor-
doni. N. Muscettola and S.F. Smith are at the
Center for Integrated Manufacturing Decision
Systems, The Robotics Institute, Carnegie
Mellon University, 5000 Forbes Ave., Pit-
tsburgh, PA 15213. A. Cesta is currently at the
Dipartimento di Informatica e Sistemistica,
Universita’ di Roma "La Sapienza,” Via
Salaria 113,00198 Roma, Italy. D. D’ Aloisi is
at the Fondazione Ugo Bordoni, Via B. Cas-
tiglione 59, 00142 Roma, Italy.

28

Hubble Space Telescope (artist’s concept).

Opportunities

Automated robotic systems offer new op-
portunities in many diverse areas, from
flexible manufacturing to space exploration.
However, the extent to which their potential
can be actually exploited depends on the
ability to efficiently manage their complex
operations. The specific domain of focus of
the research described in this paper — coor-
dinating the use of the Hubble Space Tele-
scope (HST) — is representative of such
system management problems. Efficient
operation of such automated systems requires
attendance to several classes of interacting
constraints. At one level, it is necessary to
reconcile the requirements of a large and con-
flicting set of user requests with the overall
objective of optimizing resource utilization.
However, allocation decisions must also satis-
fy complex physical constraints that introduce
interactions between the behavior of the

0272-1708/92/$03.00©1992IEEE

various components of the system and its en-
vironment. These constraints actually dictate
the circumstances under which specific user
requests can be achieved and introduce the
need for planning, synchronizing, and allocat-
ing resources to auxiliary enabling system
activities.

The Heuristic Scheduling Testbed System
(HSTS) is a software architecture for in-
tegrated planning and scheduling that has
been applied to the problem of constructing
short-term executable observation schedules
for the HST. HSTS is based on a view of
resource allocation (scheduling) and goal ex-
pansion (planning) as complementary aspects
of a more general process: the construction of
behaviors of a dynamical system that are con-
sistent with stated goals and constraints [1].
The HSTS software architecture provides
three principal capabilities:

e a domain description language for
modeling the structure and dynamics of the

IEEE Control Systems

NASA

physical system at multiple levels of abstrac-
tion,

® a temporal data base for representing
possible evolutions of the state of the system
over time, and

¢ a scheduling/planning framework for in-
tegrating decision-making at multiple levels
of abstraction.

Using HSTS, an incremental approach to
the solution of the HST problem has been
adopted, through development and analysis of
increasingly more complex models of the tele-
scope operating environment. The current
HST scheduler efficiently generates detailed
sequences of system reconfiguration activities
that reflect global allocation objectives. This
is done using a model that captures most of the
complexity of the actual operating environ-
ment. The HSTS modeling and problem solv-
ing framework is quite general, and is
applicable in any planning domain requiring
efficient allocation of resources in the
presence of complex physical constraints. In
comparison to traditional software ap-
proaches, the HSTS framework advocates ex-
plicit separation of data and control, providing
flexibility with respect to changes in system
dynamics and the external environment.

Managing the HST is quite a formidable
task. The telescope is a sophisticated $1.4
billion observatory that was placed into low
earth orbit in early 1990. With its complement
of six viewing instruments, HST allows
astronomers to observe and analyze celestial
objects at a distance 7 to 10 times further than
is currently possible from existing ground-
based observatories. Potential astronomer
demands for telescope viewing time are vir-
tually unlimited, and maximization of scien-
tific return over the telescope’s expected
operational lifetime of 15 years is of fun-
damental importance. Contention for viewing
time among prospective users is high, and
efficient management of telescope operations
to maximize scientific usage is thus a critical
operational concern.

An entire organization has as its unique
task the overall management of telescope: the
Space Telescope Science Institute (STScI).
The software tools that support HST opera-
tions are part of the Science Operations
Ground System (SOGS). At the heart of SOGS
is a FORTRAN-based software system called
SPSS, originally envisioned as a tool which
would take astronomer viewing programs as
input (accepted from competing proposals on
an annual basis) and produce executable
spacecraft instructions as output. SPSS has
had a somewhat checkered past [2], due in part
to the complexity of the scheduling problem
and the constraints that must be taken into
account, and in part to the difficulty of

February 1992

developing a solution via traditional software
engineering practices and conventional
programming languages. Evolving specifica-
tions of various telescope capabilities and
operational constraints, for example, have
necessitated several rewrites of major portions
of the code over its 9 year development cycle.
Some important shortcomings exhibited by
SPSS are:

e Inflexibility - SPSS implements a rigid
approach to solving the problem. The treatment
of different constraints is inextricably bound to
the underlying scheduling algorithm. Unan-
ticipated constraints cannot be easily accom-
modated, and many sources of scheduling
flexibility admitted by the current HST proposal
specifications [3] simply cannot be exploited.
This, in turn, places limits the system’s ability to
maximize utilization of the telescope.

¢ Incompleteness - Many detailed physi-
cal constraints are not adequately modeled in
SPSS, requiring a significant amount of
manual post-processing (i.e. constraint check-
ing) of the schedules that are produced before
they can be executed.

e Scope - Schedules are developed non-
hierarchically with respect to all embedded
operational constraints by SPSS, making the
generation of schedules over horizons longer
than one or two weeks computationally in-
feasible.

To confront computational problems
STScl has developed a separate, Artificial
Intelligence (AI) based tool for long term
scheduling called SPIKE [4]. SPIKE is used
to partition the requests of approved observa-
tion programs into weekly time buckets and
currently serves as a front end to SPSS short-
term scheduling. Detailed short-term
schedules are currently generated through the
efforts of a sizable group of operations
astronomers, who interactively guide the
placement of observations on the time line by
SPSS.

The research described in this paper aims
at providing a more effective solution to the
HST short-term scheduling/planning problem
through integration and extension of recent
research in Al-based planning and scheduling.
The work reported here has emphasized the
development of a framework for flexibly rep-
resenting and manipulating complex con-
straints, as well as the development of
heuristic strategies for effectively balancing
conflicting scheduling constraints and objec-
tives. It is important to note that the HST
problem is, in fact, representative of a larger
class of space mission planning problems.
Many of these other problems (e.g. coordina-
tion of space station activities) are consider-
ably more complex, and inflexible solution
approaches that rely heavily on human inter-

vention and participation will not be possible.
Thus, the importance of better approaches to
detailed, short-term scheduling transcends the
HST domain.

The characteristics of the short-term HST
scheduling problem require an integration of
what have historically been distinguished as
"scheduling" and "planning" techniques, as
each offers specific strengths with respect to
the required overall process. Research in
scheduling has classically focused on optimal
solutions to idealized resource allocation
problems [5] and local heuristic dispatching
rules designed to attend to specific allocation
objectives [6]. More recent research in con-
straint-based scheduling [7]-[9] has em-
phasized the problem of efficiently allocating
resources to competing activities over time in
the presence of conflicting objectives and
preferences; the results are heuristic techni-
ques that exploit the structure of the problem
constraints (in particular, bottleneck analysis)
to opportunistically focus solution develop-
ment toward an acceptable global com-
promise. Their power vis a vis classical
dispatch-based approaches has been
demonstrated in large-scale manufacturing
scheduling contexts [10]. At the same time, the
ability to exploit such problem structure relies
on specific representational assumptions held
in common with classical manufacturing
scheduling research [5]. In particular, it is
assumed that physical constraints are
"precompilable” so that the complete set of
activities requiring resources, as well as their
ordering relationships and durations, are
known in advance. This leaves resource
availability as the only aspect of state that must
be attended to over time. These repre-
sentational assumptions are insufficient in
domains like HST scheduling where the
ability to execute a given task is a complex
function of the state of the underlying physical
system and implies different networks of sup-
porting activities and resource requirements in
different contexts. In such domains, techni-
ques focusing only on resource allocation can
at best provide guidance in focusing the
development of an executable schedule.

Al-based research in planning has focused
on the problem of "compiling” activity net-
works that bring about desired goal states from
more basic representations of the effects of
actions in the world. However, as with
scheduling research, the techniques that have
emerged do not fully address the requirements
of the class of problems described above.
Planners that use the classical representational
assumptions proposed for the first time in the
STRIPS system [11],[12] do not provide
primitives for expressing temporal constraints
and therefore cannot attend to the obvious

29

need to explicitly represent and measure time.
More recently developed representational
frameworks [13]-[16] do provide these
capabilities. However, with few exceptions
(e.g., [15]), these frameworks have not at-
tempted to exploit the inherent structure of the
underlying physical system of interest. Given
the complexity of systems like HST, the ability
to work with decomposable models of system
behavior is fundamental to managing the com-
binatorics of search. More importantly, cur-
rent planning representations and frameworks
do not provide a convenient basis for effec-
tively reasoning about efficient resource al-
location. Allocation conflicts can be avoided
on a local basis, but there is no leverage to
anticipate resource contention, compromise
among conflicting objectives and dynamically
organize planning on this basis.

The remainder of the paper describes the
HSTS software system architecture for in-
tegrated planning and scheduling and its ap-
plication to the HST short-term scheduling
problem. First, a description of the HST
operating environment is given. Then, the
description language is presented and its use
is illustrated by detailing the current model of
the HST operating environment. An overview
of the integrated HSTS scheduling and plan-
ning framework is presented next, followed by
a description of the heuristics implemented in
the current HST scheduler. Finally, perfor-
mance results obtained on a realistically-sized
observation scheduling problem are given,
and the implications of our solution are dis-
cussed.

The HST Domain

Before we introduce the HSTS approach to
modeling complex systems, let us give a brief
overview of the HST operating environment.
Considered as a whole, HST is a very sophis-
ticated "sensor"; it gathers light from celestial
objects, called targets, and communicates
scientific data back to Earth through one of
two TDRSS communication satellites (Fig. 1).
Since the telescope is in low earth orbit, both
the targets and the satellites are periodically
occulted by the Earth. The telescope itself
consists of several components; their behavior
must be coordinated over time due to the
limitation of available electric power, the need
to maintain acceptable temperature profiles on
the telescope structure, etc. The pointing
device represents the HST subsystem respon-
sible for orienting it in the direction of a target
and locking the target at the center of the field
of view of a designated scientific instrument.
HST has 6 different scientific instruments.
Limitations on available electric power
prevent all of them from being switched on

30

Recorder

Scientific
Instruments
Pointing
Receiving
Devices

: I N
Tape

Communication

Devices)

Fig. 1. The Hubble Space Telescope domain.

simultaneously. Data can be read from the
instruments and directly communicated to
Earth through one of two links operating at
different communication rates (1 Mbit/s and 4
kbit/s); data can also be temporarily stored on
an on-board tape recorder and communicated
to Earth at a later time.

Astronomers formulate observation
programs according to a fairly sophisticated
specification language [10]. The basic struc-
ture of each program is a partial ordering of
observations, each specifying the collection of
light from a celestial object with one of the
telescope’s six scientific instruments. A
diverse set of temporal constraints can be im-
posed on the observations in a program, in-
cluding precedences, windows of opportunity
for groups of observations, minimum and
maximum temporal separations, and coor-
dinated parallel observations with different
viewing instruments.

Solving the HST observation scheduling
problem requires the generation of the se-
quence of commands needed both to carry out
observations (e.g., "take an exposure”, "com-
municate to Earth data from instrument X")
and to reconfigure the telescope to enable
observation execution (e.g., "point telescope
to target Y", "switch on instrument Z").

Modeling Complex System
Dynamics in HSTS

In this section we introduce the primitives
of the HSTS Domain Description Language
(HSTS-DDL). The HSTS-DDL supports
modeling of a system at multiple levels of
abstraction as a collection of interacting com-
ponents.

An HSTS model is subdivided into a set of
system components, each of which has an

associated set of properties. At any instant of
time, each property of the system can have one
and only one associated value. Some proper-
ties are static, i.e., their value does not change
over time. Others are dynamic, i.e., usually
their values change over time; in the following
we will also refer to these as state variables.

The HSTS Domain Description Language
requires explicit declaration of the set of pos-
sible values that can be assumed by each
dynamic property. In general, a value has the
form R(x1,x2,...,%n), where <x1,X2,...,Xn> repre-
sents a tuple in the relation R.

A behavior of the system is an evolution
over time of the values of its state variables: it
is completely specified once each state vari-
able has an associated value for each instant
of time. In a behavior, each state variable
changes its value a discrete number of times
and a value persists for a continuous interval
of time.

To fully describe a value, HSTS-DDL re-
quires the specification of its duration, a con-
straint on its temporal length due to the value’s
intrinsic characteristics. A duration is a pair of
temporal distances [d,D], D2d>0 where d and
D are, respectively, the lJower bound and the
upper bound of the duration: in general both
may be functions of some arguments of the
value. The complexity of the dynamics of a
system stems from the interactions between
different state variables. In fact, a value can be
present in a behavior of the system only if
well-defined patterns of values occur over
time on the state variables. In HSTS-DDL
these patierns are specified by associating a
compatibility specification with each value.
A compatibility specification consists of one
or more sets of compatibilities organized as an
AND/OR graph. A compatibility associated
to a (constrained) value specifies how this

IEEE Control Systems

value must be temporally related to another
(constraining) value or sequence of values.
More precisely, a compatibility is a 4-tuple:

<comp-class, st-var, type, temp-rel>

where comp-class is either the symbol
VALUE or the symbol SEQUENCE, indicat-
ing whether the compatibility involves a
single constraining value or a constraining
sequence of contiguous values; st-var is the
state variable of the constraining value or se-
quence; type indicates the subset of values
from which the constraining value or sequence
is extracted; and temp-rel is a temporal rela-
tion that specifies a pattern of distance con-
straints. For example, the temporal relation
before([d,D]) means that the end of the con-
straining value/sequence must precede the
start of the constrained value by an interval of
time o, such that d<c<D. The relation con-
tains([d1,D1], [d2,D2)), indicates that the con-
strained value must be contained within the
constraining value/sequence; [d1,D1] defines
the distance between the two start times and
[d2, D>] defines the distance between the two
ends. In the next section we will give several
examples of compatibility specifications.

Amodel represented in HSTS-DDL can be
subdivided into a number of layers of
abstraction. An abstract model consists of
system components and state variables that
aggregate several components and state vari-
ables at more detailed levels. The relationship
among the layers is established by refinement
descriptors that map some of the values as-
sociated with an abstract layer into a network
of values associated with the immediately
more detailed layer. The mapping also
specifies the correspondence between the start
and end times of each abstract value and those
of the corresponding detailed values.

The HST Domain Model

Within HSTS, we have developed a model
of the HST operating environment. At present,
it includes 2 of the 6 HST scientific instru-
ments, telescope pointing, data commu-
nication to Earth and the on-board tape
recorder. The components of this model are
summarized below. The environment external
to the telescope consists of targets and TDRSS
satellites. For each of them, a distinct state
variable characterizes its visibility with
respect to the space telescope. The possible
values of the pointing apparatus (state variable
HST-POINTING) are: LOCKED(?T), UN-
LOCKED(?T), LOCKING(?T), and SLEW-
ING(?T1,?T2). Here ?T, ?T1, and ?T2 are
variables denoting possible targets. For ex-
ample, SLEWING(?T1,?T2) represents the

February 1992

movement of the telescope from the direction
pointing to ?T1 to that pointing to ?T2. Fig. 2
shows the possible transitions among values.
An edge connects two nodes if the correspond-
ing values are related by a before([0,0]) com-
patibility. The highlighted nodes represent

"stable values", i.e., values with intrinsic dura-
tion [0,%oo]; all the other nodes represent states
with finite durations.

During telescope repointing, some of the
values can occur only while a target is visible.
More precisely, a window of visibility for

locking

locked

unlocked

slewing

Fig. 2. Value transition graph for HST-POINTING.

AND [< VALUE, HST-POINTING, LOCKING (?T), before([0,0])>,
< VALUE, VISIBILITY (?T), VISIBLE, contains([0, +c], [0, +])>,
OR[< VALUE, HST-POINTING, UNLOCKED (?T), after ([0,0])>,
< VALUE, HST-POINTING, SLEWING (?T), after ([0,0])> 1]

Fig. 3. Campatibilities for LOCKED(?T).

warmup (3u)

t(3u, 2s)
s (2s)

t(3n, 2s)

cooldown (2s)

t(3s, 2n)

warmup {3n)

t(3u, 4u)

cooldown (3u)

cooldown (3n)

t(3n, 4n)

warmup (4u)

s (4u)

t(4y, 3u)

t (4n, 3n)

warmup (4n)

Fig. 4. Value transition graph for WPFC-STATE.

31

AND [<VALUE, HST-POINTING,LOCKED (?target), contains ([0, +ocl, [0, +=5])>,
<VALUE, PC-STATE,S (2s), contains ([0, +<], [0, +ee])>,
<VALUE, WFPC-STATE, S (4n), contains ([0, +2], [0, +])>]

Fig. 5. Compatibilities for EXPOSE(4n,?T,?D).

target >T must necessarily contain the oc-
currence of a LOCKING(?T) operation and
of a LOCKED(?T) state. Fig. 3 lists the
complete compatibility specification for
LOCKED(?T). Itindicates that in every cor-
rect behavior of HST, LOCKED can appear
on HST-POINTING either in a sequence
LOCKING, LOCKED, UNLOCKED orin a
sequence LOCKING,LOCKED, SLEWING,
together with the constraint of co-occur-
rence between LOCKED and a target
visibility window.

Of the two instruments currently modeled,
the Wide Field Planetary Camera is the most
complex. It consists of two different sets of
CCD sensors, or detectors, the Wide Field
Camera (WF) and the Planetary Camera (PC).
Both share the same support module that
provides them with temperature control, opti-
cal filter reconfiguration operations, etc.; we
will denote the support module with WFPC.
Each of the three components of the Wide
Field Planetary Camera is modeled as a
separate state variable. Fig. 4 shows the value
transition graph for the WFPC-STATE state
variable; similar graphs describe the value
transitions of WF-STATE and PC-STATE.

The value s(2s) represents the state where
the Wide Field Planetary Camera is switched
off, and the values s(4u) and s(4n) represent
fully operational states. Both WF-STATE and
PC-STATE can assume, as a possible value,
EXPOSE(?config,?target,?duration), which
represents a picture-taking operation; here the
variable ?config can be either 4u or 4n,
depending on the operational configuration
required on the WFPC. Fig. 5 expresses the
compatibilities that have to be satisfied for the
occurrence of EXPOSE(4n,’target,?dura-
tion) on the WF-STATE.

Further physical constraints require
synchronization of the warmup and cooldown
processes of each of the three instrument com-
ponents. For example while the WF-STATE
has value s(3n), WFPC-STATE can undergo
any warm-up or cool-down sequences be-
tween s(3n) and s(4n); this is represented as a
compatibility associated with the s(3n) of the
WEF-STATE (Fig. 6).

Data are read out of a detector either by the
tape recorder or by one of the two communi-
cation links. The values of TAPE-RECORD-
ER-STATE indicate that the quantity of stored
data increases at each read-out operation and
that the content of the tape recorder has to be
"dumped" to Earth when a given capacity
threshold is exceeded. The read-out opera-
tions on the communication links and the
dump operation on the tape recorder must
occur during a window of visibility of one of
the two TDRSS satellites. To provide a global
perspective on HST operation, the detailed
model just described is augmented with an
abstract model. Here the whole telescope is
described as a single state variable HST-
STATE. The possible values of the abstract
state variable are OBSERVE(?P,?1,7S,7T,...)
(where ?P designates an observation program,
?I designates a viewing instrument, 7S desig-
nates the required operating state of 7/, and 7T
designates a target), RECONFIG-
URE(?FROM-1,?TO-I,...), which represent
the reconfiguration process between two ob-
servations, and /DLE, which represents a sta-
tionary state of the telescope where all
detectors are off and the tape recorder is
empty. The value RECONFIGURE(?FROM-
1,?TO-I....) provides an abstract description of
an entire segment of detailed behavior; its
duration can be determined by analyzing the

< SEQUENCE,
WFPC-STATE,

contains ([0, +c°], [0, +eo])>

{ S (3n), T (3n, 4n), WARMUP (4n), S (4n), T (4n, 3n), COOLDOWN (3n) },

Fig. 6. A sequence compatibility.

32

network of values that implements it at the
detailed level. Correspondence between
abstract and detailed layers is insured by a
refinement descriptor that maps an abstract
OBSERVE(?P,?1,78,?T,...) value into the
detailed EXPOSE and READ-OUT values that
actually implement it.

The Temporal Data Base

In HSTS, the construction of an executable
schedule is viewed as an incremental process
of constraint posting and propagation on a
central data base. The HSTS Temporal Data
Base (HSTS-TDB) extends the philosophy of
the time map formalism developed in [17] by
tightly connecting the state of the data base
and the model of a system. This association
provides a strong basis to support planning
and enforce data base consistency.

The unit of description of temporal behavior
is the token, a quadruple state-variable, type, st,
et,, where state-variable is the identifier of one
of the state variables in the system model, type
is a subset of the state variable values, and st and
et are the token’s start and end times, respec-
tively. The token’s meaning is that state-variable
assumes a sequence of one or more values ex-
tracted from the set fype during the interval of
time within st and ef. Depending on the number
of values that the state variable can assume
within st and ef, we distinguish between two
different kinds of tokens:

e value tokens: A value token indicates
that, within st and et, state-variable assumes a
single, constant value in fype.

o constraint tokens: A constraint token
specifies that, within st and et, state-variable
assumes a sequence of values of indefinite
length (possibly empty), each belonging to
type. During the refinement of a constraint
token can be replaced by a sequence of value
tokens satisfying the sequence’s type constraint;
therefore the constraint token is the primary
mechanism for describing partially specified
evolutions of state variables over time.

The representation of time in HSTS-TDB
is flexible, as is the one used in CPM/PERT
networks [18] and other temporal data bases
[17]. The st and et of each token are considered
as variables; durations and compatibilities
derived from a system model and temporal
requirements imposed by the user specify con-
straints among these variables. HSTS-TDB
represents temporal information as a directed
graph, with token’s starts and ends associated
to the nodes; a directed edge labeled with the
pair [d,D] from node # to ¢ indicates the
existence of a relative temporal constraint be-
tween #; and #; that restricts their distance to
vary within the interval [d,D]. Absolute tem-
poral constraints are represented as relative

IEEE Control Systems

state variable
value

state variable
value

(a) et time

st

I

(b) et time

Fig. 7. Insertion of a goal token into a constraint token: (a) before, (b) after.

distances from a reference time constant that
represents the origin of the temporal axis.

The tight connection between a network of
tokens in HSTS-TDB and the corresponding
system model expressed in HSTS-DDL im-
plies that a value can appear in a physically
consistent evolution of a state variable only if
it satisfies the constraints imposed by the
physics of the system; in order to enforce and
test consistency, each value token that has
been constrained to assume exactly one
value in type is associated with an instance
of the compatibility specification graph that
belongs to the value within the model. As
we will see in the following, the planning
process consists essentially of constructive-
ly demonstrating the existence of a set of
behaviors that satisfies the requirements of the
compatibility specifications for the tokens in
the database.

HSTS-TDB also supports problem solving
at multiple levels of abstractions. This is ob-
tained by subdividing a token network into a
number of communicating layers, each cor-
responding to a level of abstraction in the
system model. Each value token whose type
has a refinement specification in the system
model is associated with an instance of its
specification. As we will see in the following,
consistency among layers of abstraction is
established by connecting tokens in order to
satisfy the requirements of refinement
specifications.

In each layer, tokens are organized in two
networks: a goal network and a behavior net-
work. The goal network contains tokens and
temporal constraints that describe the

February 1992

problem’s requirements; each value token is
an elementary goal and goals can be related by
the same kind of temporal relations used to
specify compatibilities. For example, in an
HST observation scheduling program each
request for an observation (e.g., observe target
3C267 with the WF in configuration 4n) is
translated into a value token; relative temporal
constraints among observations (e.g., take two
pictures of 3C267 separated by at least one
day) are implemented by temporal relations
among tokens while absolute temporal con-
straints (e.g., take a picture within the first 15
days of October 1991) are implemented by
temporal relations between the reference and
goal tokens.

Planning at a given level of abstraction
consists of repeatedly selecting goal tokens
and building system behaviors that achieve
them. The construction of system behaviors
proceeds in a separate token network, the be-
havior network. For each state variable, a be-
havior network contains a linear sequence of

tokens that completely covers the entire
scheduling horizon. The st of the first token in
the sequence and the er of the last are con-
strained to occur respectively at the beginning
and at the end of the scheduling horizon;
moreover, the et of a token is identical to the
st of the following token in the sequence. If a
segment of state variable behavior is only
partially specified, it will be covered by one
or more constraint tokens.

During the planning process, each layer of
the data base is repeatedly refined through the
application of three basic data base modifica-
tion operations:

1. Commitment on the achievement of a
goal. This results in the insertion of a value
token belonging to the goal network into the
behavior network. There are two ways in
which this can be accomplished. The first
consists in merging the goal token with a
matching value token in the behavior net-
work. For example, suppose that two dif-
ferent observation programs require
observations with matching characteristics
and the behavior network already contains a
plan to achieve one of them; then the achieve-
ment of the second observation can be as-
sured by simply creating a link between the
new requirement in the goal network and the
observation token already existing in the be-
havior network. The second way is to insert
the goal token into a compatible constraint
token, i.e., one whose type has a non empty
intersection with the type of the goal token.
Fig. 7 illustrates in more detail the insertion
process. The partial specification provided by
the initial constraint token implicitly allows a
certain set of state variable trajectories; after
the insertion of the goal the set of legal trajec-
tories is restricted to those that assume the
goal value over the specified time interval.
After the commitment, the two networks
share the value token; therefore any con-
straint subsequently imposed on one net-
work will propagate to the other (e.g., the
expansion of an auxiliary task in the be-
havior network will affect how to achieve
the remaining goals).

WFSTATE — | —] oxpose(4n, 3c267, 1200k
4
[0, +d] CONTAINS 0,51
0, +o9)
HST-POINTING locked(3¢267) —a
Fig. 8. Implementation of a “contains” compatibility.
33

2. Value compatibility implementation.
This operation implements the requirements
specified by one of the open value compati-
bilities of a token in the behavior network. The
first step consists in the identification of a
value token that satisfies the type requirement
in the compatibility; the token is either
selected from the existing ones or created by
refining a constraint token. The second step
consists in connecting the two tokens by im-
plementing the specified temporal relation. A
compatibility can be consistently imple-
mented if the behavior contains tokens that
satisfy both the compatibility’s type and tem-
poral relation. Type consistency requires the
type of a token to have a nonempty intersec-
tion with the type of the compatibility. Tem-
poral consistency requires that the network of
temporal constraints not contain cycles of dis-
tance links with total length necessarily dif-
ferent from 0. Fig. 8 summarizes the process
of implementing a contains compatibility in
an HST example; the compatibility specifies
that while the WF is taking a picture of target
3C267, the telescope must be pointing and
locked on the target.

3. Sequence compatibility implementation.
This operation is analogous to the previous
one. In this case the temporal relation connects
the constrained value token to a sequence of
value and constraint tokens whose type
matches the compatibility’s type constraint.
The type of each constraint token in the con-
straining sequence must now also satisfy the
compatibility type constraint.

The three operations mentioned above pro-
vide the primitive mechanisms to imple-
ment integrated planning and scheduling
problem solvers. In fact goal commitment is
analogous to a resource allocation step in a
classical scheduling algorithm, while com-
patibility implementation corresponds to
precondition and postcondition expansion
and implementation found in classical Ar-
tificial Intelligence planning. In the next
section we will see how these primitives are
used in the HSTS integrated planning and
scheduling methodology.

The Planning Process

Multiple levels of abstraction can provide
significant leverage in managing the com-
binatorics of planning and scheduling for
complex systems. Abstract views provide a
basis for globally focusing the detailed plan-
ning effort; on the other hand, detailed views
provide a basis for sharpening abstract predic-
tions. The HSTS planning and scheduling
methodology supports flexible integration of
planning in different layers of the temporal
data base.

34

{repeat

PlanningProcedure (GoalNet, BehaviorNet)

(1) select some goals from GoalNet;
(2) insert selected goals in BehaviorNet;

(3) select an open compatibility
in BehaviorNet;
(4) implement selected compatibility

until no more open compatibilities }

Fig. 9. The planning procedure.

The objective of planning/scheduling at a
given layer of abstraction is to transfer goal
tokens from the goal network into the behavior
network and generate a consistent system be-
havior that achieves these goals. In HSTS this
process of commitment and behavior genera-
tion is carried out incrementally by repeated
applications of the planning procedure
depicted in Fig. 9.

All 4 steps in the skeletal procedure of Fig.
9 typically require choices among altematives.
For example, a compatibility can be imple-
mented in several ways, since in general we can
select the constraining token or sequence of
tokens in different positions within the evolution
of a state variable. When different choices are
possible, they are separately explored through
the application of a heuristic search procedure.
However, the pruning and selection criteria used
by the search are not provided by HSTS, since
they usually depend on the characteristics of both
the application domain and the problem to be
solved. The procedure constitutes only a
skeleton that needs to be augmented with addi-
tional heuristic knowledge when implementing
a planner/scheduler for a particular domain. In
the next section we will discuss the heuristics
presently used by the HST observation
scheduler.

Each representational layer has an
associated planning process. A planning
process exchanges information with its two
adjacent layers (or to the external world if a
layer does not exist). Let us consider two
adjacent layers i and i+1, where i/ is less
abstract than i+1. The communication from
i+1 to i involves the request to solve a prob-
lem, i.e., a refined goal network and preferen-
ces on how the goals should be achieved (e.g.,
"achieve all the goals as soon as possible").
Process i communicates back to level i+1
more precise information resulting from
detailed problem solving, in particular addi-

tional temporal constraints on the abstract
goals. Atits core, a planning process repeated-
ly calls the planning procedure described
before, using heuristics that are most suitable
to the characteristics of the system model.
When a procedure returns, the process has to
decide whether to continue planning at this
level or to communicate information to one of
the adjacent layers and pass the control to the
corresponding process. Processing stops
when either all the goals communicated by the
user have been achieved or it has been deter-
mined that no more goals can be achieved.
The HSTS planning/scheduling methodol-
ogy does not impose a specific pattern of
coordination among problem solving at dif-
ferent levels of abstractions. Therefore, the
implementation of a problem solver for a
specific application domain requires
specifying how the various planning proces-
ses coordinate. The next section describes the
coordination that is currently used by the HST
observation scheduler.

Observation Scheduling
in the HST Domain

In this section we describe the scheduler
for the HST domain currently implemented in
the HSTS architecture. Some performance
results obtained with the program on realisti-
cally-sized observation scheduling problems
will then be reported.

Given the two-level model described in an
earlier section, the current HSTS observation
scheduler has two planning processes acting
on each layer of a two-layer temporal data
base. Planning at the abstract level has respon-
sibility for determining the sequence of obser-
vations to be executed; planning at the detailed
level is responsible for developing a detailed
system behavior that implements this observa-
tion sequence.

IEEE Control Systems

To make use of more precise information
about actual telescope reconfiguration dura-
tions as scheduling proceeds, decision-
making at the abstract level and at the detailed
level are tightly coupled. Each time an obser-
vation is selected and inserted into the abstract
behavior network, on the basis of the abstract
estimates of telescope reconfiguration times,
control is passed to detailed planning that
expands the detailed setup tasks to achieve the
new expose and communicate goals. Abstract
planning currently utilizes a dispatch-based
approach (see below); on each iteration, an
additional observation is appended to the
abstract behavior extending the schedule
strictly forward in time.

The heuristics employed by each planning
process reflect an overall objective of maxi-
mizing the amount of time during which the
telescope actually collects scientific data.

Sequencing Heuristics

At the abstract level, a single state variable
characterizes the behavior of the telescope and
there is only one possible path through its
associated value transition graph. The com-
plexity of decision-making at this level lies
entirely in goal selection.

Selection of the next goal to achieve is
accomplished by a local greedy heuristic
designed to minimize dead time between ob-
servations. Specifically, a one-step look-
ahead search is performed where each of the
eligible candidates in the goal network are
hypothesized as the next observation to be
executed. A goal may be ineligible due to
ordering constraints with other unachieved
goals or due to absolute time constraints.
Among the eligible goals, the one that yields
the estimated earliest start time is identified.
However, selection of this goal might prevent
the subsequent achievement of one or more
other goals due to some temporal constraint
in the network. If this is not the case, the
earliest start goal becomes the final selec-
tion; otherwise, the temporally constrained
goal with the highest priority is selected, and
the remaining unachievable goals are
removed from the goal network.

Detailed Planning Heuristics

At the detailed level, the selection of goals
results from the refinement of the choice made
atthe abstract level. However, heuristics guide
the compatibility selection and implementa-
tion decisions.

Selection of a compatibility to implement:
The compatibility specification graphs of the
detailed model contain OR nodes. Once these
graphs are instantiated in the temporal data

February 1992

Table I
Performance Results
Times Reported in Hours, Minutes, Seconds, and Fractions of Seconds
Model SMALL MEDIUM BIG
State Variables 4 6 13
Tokens 587 604 843
Time Points 588 605 716
Temporal Constraints 1296 1328 1474
CPU Time/Observation 11.62 12.25 21.74
CPU Time/ Compatibility 0.29 0.29 0.33
Total CPU time 9:41.00 10:11.50 18:07.00
Total Elapsed Time 1:08:36.00 1:13:16.00 2:34:07.00
Schedule Horizon 41:37:20.00 54:25:46.00 52:44:41.0

base, the planner must select only one of the
alternative OR branches for implementation.
Heuristics perform this selection. All com-
patibilities that remain after this selection
process must be achieved to obtain a complete
plan. Therefore, we need an additional
mechanism to select the order in which they
will be implemented. The order determines
how the topology of the behavior network
evolves, a factor that directly influences the
effort required to implement successive com-
patibilities.

Let us look at an example of the OR com-
patibility selection heuristic. The graph
describing value adjacencies can present
branching, as in the case of value s(3n) for the
WFPC-STATE (Fig. 4). The current HST
model presents this situation for all the state
variables associated with the two scientific
instruments, and for the telescope pointing
state. The topology of each of these graphs,
however, grants the existence of a single
acyclical path for each ordered pair of values.
The existing interactions between the dura-
tions of sequences of values and the com-
patibility temporal relations in the HST model
assure that the minimal length path correctly
coordinates in time with other state variables.
The heuristic therefore consists of a table,
indexed by a pair <branching-value destina-
tion-value>, where each entry represents the
first value encountered in the acyclical path
starting from the branching value and reaching
the destination value.

For another example, let us consider the
communication of data to Earth through the
fast communication link (1 Mbit-link); this

process requires locking the telescope onto
one of the two TDRSS satellites. To minimize
idle time, a heuristic chooses the satellite that
allows scheduling of the communication
operation as soon as possible after the cor-
responding exposure. The selection con-
siders how the visibility windows of the
target required by the exposure overlap with
those of the two alternative satellites,
together with the kind of synchronization
between expose and communicate (e.g.,
[before], [contains]).

The mechanism that selects the order
of compatibility implementations gives
priority to compatibilities that relate
values on the same state variable. When-
ever such a compatibility is open, a gap
(i.e., a constraint token) exists among two
values on a state variable. The planner
continues to extend the sequence of
values on the state variable until the gap
is closed.

If no compatibility that relates values on
the same state variable is open, then the plan-
ner selects a compatibility that involves dif-
ferent state variables. The open "cross"
compatibilities among each pair of state vari-
ables are organized in a separate queue. The
selection mechanism chooses a queue and
tries to achieve all the contained com-
patibilities one by one. However, the satisfac-
tion of a cross compatibility might create a gap
on a state variable. In this case, the dequeueing
of cross compatibilities is suspended until the
new gap is closed.

Implementation of a compatibility: The
implementation of a compatibility requires the

35

determination of the position of the requested
value or sequence in the behavior network.

A fetch operation linearly scans the se-
quence of tokens associated with the required
state variable in the behavior network and
returns a list of candidate tokens or sequences
of tokens. HSTS uses look-ahead temporal
constraint propagation to detect inconsisten-
cies. Mechanisms are provided to limit such
propagation to a subnetwork of temporal con-
straints. By relying on the decomposition of
the model into interacting state variables, it
is possible to associate each cross compati-
bility with a set of tightly coupled state
variables. The look-ahead constraint
propagation limits the search for cycles to
these state variables.

Among the alternatives returned by the
fetch operation, a heuristic gives priority to
the alternative that is temporally closest to
the constrained value, given the goal of
minimizing the time spent in reconfiguring the
telescope.

Performance Results

We conducted experiments with three
models of the HST operating environment of
increasing complexity and realism, respectively
denoted as SMALL, MEDIUM, and LARGE
models. All models share a representation of the
telescope at the abstract level as a single state
variable; they differ with respect to the number
of components modeled at the detailed level. The
SMALL model consists only of the telescope
pointing device and the Wide Field Planetary
Camera. The MEDIUM model adds the two
state variables for the Faint Object Spectrograph
to the previous model, while the BIG model also
includes data communication and tape recorder
management. The test problem consists of a set
of 50 observation programs, each containing a
single observation with no user-imposed time
constraints. The experiments were run on a TI
Explorer II+ with 16 Mbytes of RAM memory.

The data in Table I give some measures
relative to the final executable schedule that
was produced with each model. The number
of tokens indicates the total number of dis-
tinct state variable values that constitute the
schedule. The temporal separation con-
straints are distance constraints that relate
two time points on different state variables;
their number gives an indication of the
amount of synchronization needed to coor-
dinate the evolution of the state variables in
the schedule.

With respect to the processing times,
notice that since the heuristics that guide the
planning search exploit the modularity of
the model and the locality of interactions,
the average CPU time (excluding garbage

36

collection)pentimplementingeachrequired
compatibilityinthethreemodelsremainsrela-
tivelystable.Thetotalelapsedtime(including
garbage collection) spent generating an ex-
ecutablescheduleforthe50observationsisan
acceptable fraction of the real time horizon
covered by the schedules; this indicates the
practicality of the framework in the actual
HSToperatingenvironment.

With regard to the quality of the
schedules, the percentage of time spent
taking exposures during the time horizon
covered varies between 22% and 25%. This
result is comparable with general expecta-
tions of telescope use. However, further re-
search is needed to represent the full extent
of the actual operating constraints (e.g.,
treatment of availability of electric power)
and to devise strategies to generate efficient
schedules for problems involving more com-
plex program constraints. To this end, we are
currently investigating the integration of
global problem space analysis and focusing
techniques [4], [9], [19]. Some initial results
in this direction are reported in [20].

Conclusions

To efficiently operate complex robotics
systems, it is necessary to allocate system
resources to competing user requests while
coordinating system reconfiguration ac-
tivities. HSTS addresses both concerns within
an integrated planning and scheduling
architecture. HSTS has been applied to the
Hubble Space Telescope observation schedul-
ing domain. Its modeling capabilities allow
explicit representation of the various system
components and their interactions over time;
this leads naturally to a framework for in-
crementally addressing complex problems,
through development of solutions to a series
of increasingly more realistic scenarios. The
structural characteristics of the model can be
exploited by heuristics that guide the coor-
dinated planning processes; this allows the
design of efficient planning and scheduling
algorithms operating at multiple levels of
abstraction. Finally, the evolving schedule is
represented as an explicit network of con-
straints; the flexibility remaining in the final
solution (e.g., on the start and duration of
various activities) eases the adjustment of a
schedule when reacting to unexpected exter-
nal events.

Acknowledgment

The authors thank Gilad Amiri and Dhiraj
Pathak for their valuable contributions to the
HSTS project and Robert Frederking for com-
ments on an earlier draft of this paper.

References

[1}N. Muscettola, "Planning the behavior of dynami-
cal systems,” Tech. Rep. CMU-RI-TR-90-10, The
Robotics Institute, Camegie Mellon Univ., 1990.

[2]1 M. Waldrop, "Will the Hubble Space Telescope
compute?”, Science, vol. 243, pp. 1437-1439, Mar.
1989.

[3] STScl, "Proposal instructions for the Hubble
Space Telescope,” Tech. Rep., Space Telescope Sci.
Inst., 1986.

[4] M.D. Johnston, "SPIKE: Al scheduling for
NASA’s Hubble Space Telescope,” in Proc. 6th
Conf. Artificial Intelligence Applications, 1990, pp.
184-190.

{51 K.R. Baker, Introduction to Sequencing and
Scheduling. New York: Wiley, 1974.

[6] S.S. Panwalker and W. Iskander, "A survey of
scheduling rules," Operations Res., vol. 25, pp.
45-61, 1977.

[71M.S. Fox and S. F. Smith, "ISIS: A knowledge-
based system for factory scheduling,” Expert Syst.,
vol. 1, no. 1, pp. 25-49, 1984.

[81 S.E Smith, P.S. Ow, 1.Y. Potvin, N. Muscettola,
and D. Matthys, "An integrated framework for
generating and revising factory schedules,” J. Opera-
tional Res. Soc., vol. 41, no. 6, pp. 539-552, 1990.

[9] N. Sadeh and M.S. Fox, "Variable and value
ordering heuristics for activity-based job-shop
scheduling," in Proc. Fourth Int. Conf. Expert Sys-
tems in Production and Operations Management,
Hilton Head Island, S.C., 1990.

[10] P.S. Ow and S.F. Smith, "Viewing scheduling
as an opportunistic problem solving process,” An-
nals of Operations Res., vol. 12, 1988.

[11] R.E. Fikes, P.E. Hart, and N.J. Nilsson, "Learn-
ing and executing generalized robot plans,” Artifi-
cial Intell., vol. 3, pp. 251-288, 1972.

[12} D.E. Wilkins, Practical Planning. Morgan
Kaufmann, 1988.

{13] J. Allen and J.A. Koomen, "Planning using a
temporal world model," in Proc. 8th Int. Joint Conf.
Artificial Intelligence, Karlsruhe, Germany, pp.
741-747, 1983.

[14] T. Dean, R.J. Firby, and D. Miller, "Hierarchi-
cal planning involving deadlines, travel time, and
resources,” Computational Intell., vol. 4, pp. 381-
398, 1988.

[15] A. Lansky, "Localized event-based reasoning
for multiagent domains," Computational Intell., vol.
4, pp. 319-340, 1988.

[16] S. Vere, "Planning in time: Windows and dura-
tions for activities and goals," IEEE Trans. Pattern
Anal. Machine Intell., vol. PAMI-S, 1983,

[17] T.L. Dean and D.V. McDermott, "Temporal
data base management," Artificial Intell., vol. 32,
pp- 1-55, 1987.

[18] C. Hendrickson and T. Au, Project Manage-
ment for Construction. Englewood Cliffs, NJ: Pren-
tice Hall, 1989.

IEEE Control Systems

[19] N. Muscettola and S.F. Smith, "A probabilistic
framework for resource-constrained multi-agent
planning," in Proc. 10th Int. Joint Conf. Artificial
Intell., Milano, Italy, 1987, pp. 1063-1066.

[20] S.F. Smith and D.K. Pathak, "Balancing an-
tagonistic time and resource utilization constraints
in over-subscribed scheduling problems," Tech.
Rep. CMU-RI-TR-91-05, The Robotics Inst., Car-
negie Mellon Univ., 1991.

Nicola Muscettola is a
Systems Scientist at the
Robotics Institute at Car-
negie Mellon University.
He received his Diploma di
Laurea (B.S.-M.S.) in 1982
and his Dottorato di Recer-
ca (Ph.D.) in 1987, both
from Politecnico di Milano,
Italy. Since 1985 he has
been involved in a number of scheduling and plan-
ning projects at the Robotics Institute of Carnegie
Mellon University. He was the principal designer
and developer of the HSTS software architecture.
He is also currently involved in applying HSTS to
the solution of large scale transportation planning
problems. His research interests span planning,
scheduling, and simulation, covering both theoreti-
cal and applicative aspects, temporal reasoning, rep-

1992 ACC

resentation and problem solving in qualitative sys-
tems. He is a member of AAAIL, ACM, and IEEE.

Stephen F. Smith is a Re-
search Scientist in the
Robotics Institute at Car-
negie Mellon University,
and Director of the Produc-
tion Control Laboratory
within the Institute’s Center
for Integrated Manufactur-
ing Decision Systems. He
holds a B.S. degree in
mathematics from Westminster College, and M.S.
and Ph.D. degrees in computer science from the
University of Pittsburgh. His research interests in-
clude constraint-based planning and scheduling, in-
tegration of predictive and reactive
decision-making, distributed problem solving, tem-
poral reasoning, machine learning, and knowledge-
based production management. He has been a
principal architect of several knowledge-based
scheduling systems for complex manufacturing and
space applications, and has published over 30 ar-
ticles in this area.

Daniela D’Aloisi is a Research Scientist in the
Information Systems Group at the Fondazione Ugo
Bordoni, Rome, Italy, where she is involved in
artificial intelligence research. She received a de-

gree in electronic engineer-
ing from the University of
Rome with a major in digi-
tal signal processing.
During 1990 she was a
Visiting Scholar at the
CIMDS, Robotics Institute
of Carnegie Mellon Univer-
sity. Her current research
interests include
knowledge representation, reasoning, and human-
computer interaction.

Amedeo Cesta has been a
Research Scientist for the
Italian National Research
Council since September
1991. He obtained a degree
in electrical engineering fro
the University of Rome in
1983. After working as a
Consultant on different ar-
tificial intelligence
projects, he joined the Doctorate Program in Com-
puter Science at the University of Rome in 1988 and
he is currently finishing his thesis. During 1990 he
was a Visiting Scholar at the Robotics Institute of
Carnegie Mellon University working at the HSTS
project. Dr. Cesta’s current interests include plan-
ning, scheduling, multi-agent interaction and man-
machine interfaces.

The American Automatic Control Council
will hold the American Control Conference
(ACC) Wednesday through Friday June 24-
26, 1992, in Chicago, IL. This conference will
bring together people working in the fields of
control, automation, and related areas.

Both contributed and invited papers will be
included in the program. The ACC will cover
a range of topics relevant to the theory and
practical implementation of control and in-
dustrial automation and to university educa-
tion in control. Topics of interest include, but
are not limited to, the following: linear and
nonlinear systems, identification and estima-

February 1992

tion, robustness issues, signal processing,
multivariable systems, large scale systems,
robotics and manufacturing systems,
guidance and control sensors, simulation,
adaptive control, optimal control, expert sys-
tems, and control applications.

The deadline for contributed papers and
invited sessions has passed. For further infor-
mation contact:

General Chair:

Dale E. Seborg

Dept. of Chemical & Nuclear Engrg.
University of California

Santa Barbara, CA 93106

Phone: 805/893-3352

Fax: 805/893-4731

e-mail: seborg@engrhub.ucsb.edu

Program Chair:

B. Ross Barmish

Dept. of Elect. & Comp. Engrg.
University of Wisconsin

Madison, WI 53706-1691

Phone: 608/262-1265

Fax: 608/262-1267

e-mail: barmish@apollo.ece.wisc.edu

37

