Title:
A geographic distribution data set of biodiversity in Italian freshwaters

Journal Issue:
Biogeographia – The Journal of Integrative Biogeography, 31

Author:
Boggero, Angela
Pierri, Cataldo
Alber, Renate
Austoni, Martina
Barbone, Enrico
Bartolozzi, Luca
Bertani, Isabella
Campanaro, Alessandro
Cattaneo, Antonella
Cianferoni, Fabio
Colangelo, Paolo
Corriero, Giuseppe
Dorr, Ambrosius Martin
Elia, A. Concetta
Ficetola, G. Francesco
Fontaneto, Diego
Gaino, Elda
Goretti, Enzo
Kamburska, Lyudmila
La Porta, Gianandrea
Lauceri, Rosaria
Lorenzoni, Massimo
Ludovisi, Alessandro
Manca, Marina
Morabito, Giuseppe
Nonnis Marzano, Francesco
Oggioni, Alessandro
Riccardi, Nicoletta
Rossetti, Giampaolo
Tagliolato, Paolo
Thaler, Bertha
Ungaro, Nicola
Volta, Pietro
Zaupa, Silvia
Rosati, Ilaria
Fiore, Nicola
We present a data set on the biodiversity of Italian freshwaters, including lakeshores and riverbanks of natural (N=379: springs, streams and lakes) and artificial (N=11: fountains) sites. The data set belongs partly to the Italian Long Term Ecological Research network (LTER-Italy) and partly to LifeWatch, the European e-Science infrastructure for biodiversity and ecosystem research. The data included cover a time period corresponding to the last fifty years (1962-2014). They span a large number of taxa from prokaryotes and unicellular eukaryotes to vertebrates and plants, including taxa linked to the aquatic habitat in at least part of their life cycles (like immature stages of insects, amphibians, birds and vascular plants). The data set consists of 6463 occurrence data and distribution records for 1738 species. The complete data set is available in csv file format via the LifeWatch Service Centre.
DATAPAPER: A geographic distribution data set of biodiversity in Italian freshwaters

ANGELA BOGGERO1,2,*, CATALDO PIERRI1,3, RENATE ALBER4, MARTINA AUSTONI2, ENRICO BARBONE5, LUCA BARTOLOZZI1,6, ISABELLA BERTANI7,8, ALESSANDRO CAMPANARO9, ANTONELLA CATTANEO10, FABIO CIANFERONI1,6, PAOLO COLANGELO1,2, GIUSEPPE CORRIERO1,11, AMBROSIIUS MARTIN DÖRR12, A. CONCETTA ELIA12, G. FRANCESCO FICETOLA13,14, DIEGO FONTANETO2, ELDI GAINO12, ENZO GORETTI12, LYUDMILA KAMBURSKA2, GIANANDREA LA PORTA12, ROSARIA LAUCERI2, MASSIMO LORENZONI12, ALESSANDRO LUDOVISI12, MARINA MANCA2, GIUSEPPE MORABITO2, FRANCESCO NONNIS MARZANO12, ALESSANDRO OGGIONI1,15, NICOLETTA RICCARDI2, GIAMPAOLO ROSSETTI7, PAOLO TAGLIOLATO1,16, BERTHA THALER4, NICOLA UNGARO5, PIETRO VOLTA2, SILVIA ZAUPA2, ILARIA ROSATI1,3, NICOLA FIORE1,17, ALBERTO BASSET1,17, ALDO MARCHETTO2

1LifeWatch, Italy- http://www.servicecentrelifewatch.eu
2National Research Council, Institute of Ecosystem Study (CNR-ISE), 28922 Verbania Pallanza, Italy
3National Research Council, Institute of Agro-environmental and Forest Biology, Rome, Italy
4Biological Laboratory, Environmental Agency of the Autonomous Province (APPA) Bolzano South Tyrol, 39055 Laives, Italy
5Apulian Regional Agency for the Environmental Prevention and Protection (ARPA), 70126 Bari, Italy
6Natural History Museum of the University of Florence, Zoological Section "La Specola", 50125 Florence, Italy
7Department of Life Sciences, University of Parma, 43124 Parma, Italy
8Water Center, Graham Sustainability Institute, University of Michigan, Ann Arbor, MI 48104, USA
9National Centre for the Study and Conservation of Forest Biodiversity "Bosco della Fontana", National Forest Service, 46045 Mantova, Italy
10Département de Sciences Biologiques, Université de Montréal, 6162 Montréal, Québec, Canada H3C 3J7
11Department of Biology, University of Bari “Aldo Moro”, 70125 Bari, Italy
12Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
13Laboratoire d’Ecologie Alpine (LECA), Université Grenoble-Alpes, 38000 Grenoble, France
14LECA, Centre National de la Recherche Scientifique (CNRS), 38000 Grenoble, France
Keywords: artificial habitats, freshwater biota, lentic waters, LifeWatch, lotic waters, natural habitats, reference collection.

SUMMARY
We present a data set on the biodiversity of Italian freshwaters, including lakeshores and riverbanks of natural (N=379: springs, streams and lakes) and artificial (N=11: fountains) sites. The data set belongs partly to the Italian Long Term Ecological Research network (LTER-Italy) and partly to LifeWatch, the European e-Science infrastructure for biodiversity and ecosystem research. The data included cover a time period corresponding to the last fifty years (1962-2014). They span a large number of taxa from prokaryotes and unicellular eukaryotes to vertebrates and plants, including taxa linked to the aquatic habitat in at least part of their life cycles (like immature stages of insects, amphibians, birds and vascular plants). The data set consists of 6463 occurrence data and distribution records for 1738 species. The complete data set is available in csv file format via the LifeWatch Service Centre.

BACKGROUND & SCOPE
Many freshwater and taxonomic data sets exist at both European and National levels, such as the Freshwater Biodiversity Data Portal - BioFresh (http://data.freshwaterbiodiversity.eu/metadb/metaDBfts/index.php), the National Network of Biodiversity (http://193.206.192.106/portalino/home_it/dati.php), and Nature 2000 (http://www.minambiente.it/pagina/rete-natura-2000). Further web-links exist that are data portals to locations along the Italian peninsula where information pertaining to the distribution of freshwater biodiversity is available (e.g., Checklist of the Italian Fauna, AQEM-STAR invertebrate database, Alpine GIG lakes phytoplankton, macrophytes and macroinvertebrates data, European Trichoptera, etc.). Of all of these websites and portals, no one site combines the simultaneous presence of different taxonomic groups. There is a clear need to collate different data sets based on broad-scale and long-term monitoring projects. Hence, we have compiled a data set that represents one of the most comprehensive and thorough collection nationwide, which is part of a larger LifeWatch data set including also coastal lagoons, littoral marine waters and terrestrial habitats.

This vast data set was created under the umbrella of a case study on Alien Species (AS) that was proposed and coordinated by LifeWatch Italy at the European level. The case study is designed using species occurrence data to assess the vulnerability of different Italian ecosystems to AS arrival (Boggero et al. 2014, Corriero et al. 2016). The taxonomic resolution adopted in the data set is at the species level for all the included taxonomic groups across different phyla. The utility of such a data set is widely recognized and reflected in INVASIVESNET (Lucy et al. 2016) joining together with the LifeWatch and several other existing initiatives at the European level to trace, monitor and counteract...
the arrival of AS. By collaborating and combining efforts, the objective is to capitalise on existing knowledge and data exchange, scopes, and ideas, to create a better understanding of the AS problem, to find a common solution and to spread the news about this issue – including spreading the news to the general public.

The purpose of the present data set, which in line with the previously cited data sets, is to collect and share curated and verified species presence and geographic distribution data. This has been done for all the species recorded at 390 Italian freshwater sites belonging to the Italian Long Term Ecological Research network (LTER-Italy, http://www.lteritalia.it) (Bertoni 2012) and to the LifeWatch network (http://www.lifewatch.eu, http://www.servicecentrelifewatch.eu) (Basset and Los 2012, Basset 2016). The data set spans over a temporal period of about fifty years (1962-2014) across the Alpine, Continental and Mediterranean biogeographic zones of Italy (EEA 2002).

This data set is of particular interest as it aims to make biodiversity information available to future research that focuses on the occurrence and distribution of freshwater species at the national level. Data may also be relevant to policy makers, public authorities and enterprises involved in protection, management and sustainable use of freshwater ecosystems and their biodiversity. The analysis of this extensive survey of freshwater biodiversity in continental Italy will provide a basis for setting conservation priorities, developing monitoring programs and enforcing regulation (Boggero et al. 2014).

RESULTS

SUMMARY STATISTICS

The data set contains 17 different columns of information (Table 1), including: “Catalognumber”, to avoid replicates of species names; “eunisorganismgroups”, not strictly hierarchically identified, but assigned according to the EUNIS species group subdivision (http://eunis.eea.europa.eu/species-groups.jsp); then, from “phylum” to “providedscientificname” or to “scientificname”, Linnean categories were considered. Information on subspecies was kept to avoid losing information that could be useful for some users. Another series of columns specify: the verified “Alien” status of a species; the “eventdate” during which the sampling campaign occurred; the “locality” where the species were found following Darwin Core standards (http://rs.tdwg.org/dwc) with “decimallatitude” and “decimallongitude” description; “eunishabitatstypencode” to define the EUNIS type of habitat (used at level 1 only); the “scientificnameauthorship” and “namepublishedinyear” with information about author and year of description of each species.

Reported data include species occurrence from 390 sites (Fig. 1) and taxa from 11 different EUNIS groups (“algae”, “amphibians”, “birds”, “cyanobacteria”, “ferns”, “fishes”, “flowering plants”, “invertebrates”, “mosses and liverworts”, “protists”, “reptiles”) spanning 24 phyla (Table 2).

All of the records were verified by experts belonging to the different LifeWatch nodes. The LifeWatch nodes are represented by different Institutions (Universities, Research Centres, Museums, Environmental Agencies, National Forest Service, etc.) that gathered and managed species occurrence data from the different sites. The sites represent only freshwater habitats.
TABLE 1: Description of the dataset with specific information relative to definitions, units and storage.

<table>
<thead>
<tr>
<th>LifeWatch DataPortal Fields</th>
<th>Variable definition</th>
<th>Units</th>
<th>Storage type</th>
</tr>
</thead>
<tbody>
<tr>
<td>catalognumber</td>
<td>An identifier (preferably unique) for the record within the data set or collection</td>
<td></td>
<td>Integer</td>
</tr>
<tr>
<td>eunisorganismgroups</td>
<td>Assignment of the organism group based on the EEA, EUNIS species groups</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td></td>
<td>(http://eunis.eea.europa.eu/species-groups.jsp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phylum</td>
<td>Full scientific name of the phylum in which the taxon is classified</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>class</td>
<td>Full scientific name of the class in which the taxon is classified</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>order</td>
<td>Full scientific name of the order in which the taxon is classified</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>family</td>
<td>Full scientific name of the family in which the taxon is classified</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>genus</td>
<td>Full scientific name of the genus in which the taxon is classified</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>providedscientificname</td>
<td>Full scientific name of the species as assigned by providers</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>scientificname</td>
<td>Full scientific name of the species assigned following the rules of currently (2015)</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td></td>
<td>accepted nomenclature for the taxonomic group, without authorship and date information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alien</td>
<td>Any species deliberately or inadvertently introduced to Italy by human activities after the discovery of the New World by Columbus in 1492 (Boggero et al. 2014)</td>
<td></td>
<td>Integer</td>
</tr>
<tr>
<td>eventdate</td>
<td>Date-time or interval during which an event occurred. For occurrences, this is the date-time when the event was recorded</td>
<td>DateTime</td>
<td></td>
</tr>
<tr>
<td>locality</td>
<td>Specific description of the place where the species was captured</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>decimallatitude</td>
<td>Geographic latitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a location</td>
<td>Decimal degrees (projection EPSG:4326 WGS84)</td>
<td>Double</td>
</tr>
<tr>
<td>decimallongitude</td>
<td>Geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum) of the geographic center of a location</td>
<td>Decimal degrees (projection EPSG:4326 WGS84)</td>
<td>Double</td>
</tr>
<tr>
<td>eunishabitatstypecode</td>
<td>Assignment of the habitat type code based on the EEA, EUNIS habitat types. Only the levels 1-3 are used</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>scientificnameauthorship</td>
<td>Authorship information for the scientific name formatted according to the conventions of the applicable nomenclatural code</td>
<td></td>
<td>String</td>
</tr>
<tr>
<td>namepublishedinyear</td>
<td>Four-digit year in which the scientific name was published</td>
<td></td>
<td>Integer</td>
</tr>
</tbody>
</table>
FIGURE 1. Sampling sites distributed along the Italian peninsula.

DATA SET

Object name: Dataset_Biodiversity_Freshwaters_LifeWatch_2015.
Data set citation: Dataset_Biodiversity_Freshwaters_LifeWatch_2015.
Character encoding: UTF-8.
Format name: csv, json.
Format version: 1.0.
Distribution (permanent link): http://www.servicecentrelifewatch.eu
Date of creation: 7 March 2014.
Date of last revision: 29 November 2015.
Date of publication: 8 April 2016.

Update policy: following update policy rules of LifeWatch.

Language: English.

License of use: if used by researchers, administrators, managers, teachers, amateurs, general public, and others, the access is free and the use is based upon request. Details are defined in the intellectual property information. The data set authors would appreciate users providing a link to the original data set (http://www.servicecentrelifewatch.eu), when possible, or when researchers use the data to cite the present paper and/or to consider the data set authors for co-authorship. Stakeholders can contact authors via the contact information provided in the metadata.

Metadata language: English.

Metadata managers: Angela Boggero (a.boggero@ise.cnr.it), Ilaria Rosati (ilaria.rosati@unisalento.it).

<table>
<thead>
<tr>
<th>Phylum</th>
<th>No. of records</th>
<th>No. of species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoebozoa</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Annelida</td>
<td>97</td>
<td>43</td>
</tr>
<tr>
<td>Arthropoda</td>
<td>1893</td>
<td>426</td>
</tr>
<tr>
<td>Bryophyta</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cercozoa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Charophyta</td>
<td>123</td>
<td>63</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>486</td>
<td>224</td>
</tr>
<tr>
<td>Choanozoa</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Chordata</td>
<td>883</td>
<td>98</td>
</tr>
<tr>
<td>Ciliophora</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cryptophyta</td>
<td>89</td>
<td>24</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>164</td>
<td>83</td>
</tr>
<tr>
<td>Euglenozoa</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Haptophyta</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>Heliozoa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mollusca</td>
<td>54</td>
<td>28</td>
</tr>
<tr>
<td>Myzozoa</td>
<td>57</td>
<td>23</td>
</tr>
<tr>
<td>Nematoda</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td>1387</td>
<td>362</td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Porifera</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rotifera</td>
<td>915</td>
<td>205</td>
</tr>
<tr>
<td>Tracheophyta</td>
<td>205</td>
<td>113</td>
</tr>
</tbody>
</table>

MANAGEMENT DETAILS

Project title: Vulnerability of ecosystems to Alien Species invasion.

Database managers: Angela Boggero, Cataldo Pierri.

Temporal coverage: the present data set refers to the last 52 years (1962-2014).

Record basis: Mainly preserved specimens. Sometimes sample collection was based on field observation without specimen collection and preservation.

Sampling methods: The data set was created by collating different data sets managed by several research institutions. The data is shared within the context of the Alien Species Showcase of the
LifeWatch infrastructure. The definition of alien species that is adopted for the data set is very general, and is defined and available in the Alien Species Thesaurus produced by LifeWatch Italy (http://thesauri.lifewatchitaly.eu/alienspecies/index.php): where species are considered alien if deliberately or inadvertently introduced to Italy by human activities after the discovery of the New World by Columbus in 1492 (Boggero et al. 2014). This definition is similar to what plant invasion biologists call “neophytes” (Pyšek, 1998).

IT specialist: Nicola Fiore.

Funding grants: Data were obtained within the framework of several European and Italian projects, and thanks to the LifeWatch support. LifeWatch Italy is funded by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and managed by the National Research Council of Italy.

GEOGRAPHIC COVERAGE

Study area: Sites are distributed along the Italian peninsula. The five main geographical areas are North-West, North-East, North, Centre, and South (Fig. 1). The data were georeferenced by each LifeWatch node according to WGS 84 datum.

Sampling design: The general strategy developed within LifeWatch was to try to cover most of the territory and many different freshwater habitats. However, the data set covers only a minor part of Italy. It is anticipated that in the near future the data set will increase exponentially. The sampling design was intended to compile the information necessary for assessing Italian freshwater biodiversity and, in particular, the impacts of alien species on ecosystems. The idea is to design adequate management strategies to minimize the impacts of alien species and enable stakeholders to adapt the developed services to their particular needs (local, regional, or national scales).

Habitat type: Four habitat types (Fig. 2) were covered by the different sites belonging to the LifeWatch network according to the EUropean Nature Information System (EUNIS; http://eunis.eea.europa.eu/) hierarchical protocol of habitat identification considering only the first-level option. The EUNIS habitat type classification is a pan-European system that aims to facilitate the harmonized description and collection of data across Europe. Thus, the EUNIS classification is a reference framework for the development of indicators and environmental reporting at the administrative and political level, and is particularly suitable for a study focusing on alien species impact.

Following The EUNIS system, the sites were classified as:

C1 - Surface standing waters;
C2 - Surface running waters;
C3 - Littoral zone of inland surface waterbodies;
J5 - Highly artificial man-made waters and associated structures.

Biogeographic region: Alpine, Continental and Mediterranean (EEA 2002).

Country: Italy.

Quality control for geographic data: Quality control was performed using Google maps identification of sites, and latitude and longitude coordinates provided by data providers. Geographic coordinate
format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset were additionally controlled.

FIGURE 2: Representativeness of the different EUNIS habitats in the data set. C1 Surface standing waters; C2 Surface running waters; C3 Littoral zone of inland surface waterbodies; J5 Highly artificial man-made waters and associated structures.

LITERATURE SEARCH

General description: The information on species presence at each site comes from published papers on surveys directly conducted by the authors and their collaborators from 1962 to 2014. Moreover, it includes additional papers and reports from universities and research institutions, as well as notes in technical reports from local authorities.

Literature search methods: All relevant literature (Supplementary file S1) was obtained using data from published papers on national and international journals directly supplied by data providers. Moreover, for each site, all the published grey literature (papers internal to public organizations, master thesis, reports, research deliverables, books, monographs) was screened.

Quality control for literature data: The data collated was property of most of the authors and co-authors of this paper, and since the same researchers are experts in their disciplines at National and International levels, they were involved as experts of the LifeWatch nodes. Therefore, the published data are considered reliable and simply checked for nomenclatorial consistency.
TAXONOMIC COVERAGE

General description: The data set covers a wide spectrum of taxonomic groups inhabiting freshwater habitats and their surroundings. The inclusion of a species as aquatic or its exclusion as not aquatic was carried out considering its life cycle, linked or not to the aquatic habitat in at least part of its life. Thus, we included truly aquatic organisms, together with those that have immature stages in water, nest in or on water, and have roots in water.

Taxonomic ranks: All living freshwater biota or organisms related to waters in at least part of their life were considered. In particular, we gathered data from 24 phyla.

Taxonomic methods: These include revision of names, synonymizing, delimitation of genera and higher taxa, both conducted manually and through online tools supplied by the LifeWatch infrastructure (http://www.servicecentrelifewatch.eu).

Taxon specialists: Each LifeWatch node was responsible for data management from specific geographical areas and for the taxonomic control. Taxonomists from each node screened the data set for taxonomic reliability, potential problems in taxonomic identification, consistency and homogeneity of taxonomic coverage, and temporal coverage of repeated sampling for each site.

Quality control for taxonomic data: Record validation and cleaning were based on several steps and divided into: a) data standardization (considering the same time-span length, check of nomenclatural changes or synonyms); b) data cleaning and validation for taxonomic reliability and taxonomic consistency using different large zoological and botanical taxonomic indexes and databases known at European level following Pan-European Species directories Infrastructure (PESI), World Register of Marine Species - WoRMS, and Catalogue of Life; and c) final semi-automatic data cleaning, through the tools available on the LifeWatch portal. The online tools facilitate the taxonomic cleaning work of the researchers presenting at once the information on the species coming from different main international Global Species Databases (WoRMS, PESI, and Catalogue of Life).

ACKNOWLEDGEMENTS

All the Authors would like to express their sincere gratitude to technicians, students, and colleagues offering their unconditional support during the different sampling campaign and the laboratory activities during all these years of hard work. Without their cooperation, this data set could never have been created. Authors are also in debt with Mattia Menchetti and an anonymous reviewer for their comments improving an earlier version of the manuscript, with Ester Eckert (CNR, Institute of Ecosystem Study, Italy) and Marnie Campbel (Univ. of Waikato, New Zealand) for their helpful suggestions and for the English correction of the text.

AUTHOR CONTRIBUTIONS

Angela Boggero: freshwater responsible and coordinator in LifeWatch Italy, contacts with data providers.

Cataldo Pierri: assembler of the data set, contacts with data providers.

Angela Boggero, Cataldo Pierri: these authors contributed equally to the present paper.

Giuseppe Corriero: coordinator of the Alien Species showcase in LifeWatch Italy.

Cataldo Pierri, Ilaria Rosati, Nicola Fiore: full database managers in LifeWatch Italy.

Nicola Fiore, Alessandro Oggioni, Paolo Tagliolato: ICT in LifeWatch Italy.

Paolo Colangelo, Diego Fontaneto, Aldo Marchetto: responsible for statistical elaboration and statistical tools development.

Alberto Basset: JRU Manager in LifeWatch Italy.

REFERENCES

Lucy, F.E., Roy, H., Simpson, A. et al. (2016) INVASIVESNET towards an International Association for Open Knowledge on Invasive Alien Species. Management of Biological Invasions, 7, 131–139. DOI:10.3391/mbi.2016.7.2.01

Submitted: 9 May 2016
First decision: 7 June 2016
Accepted: 21 September 2016
Edited by Federico Marrone
SUPPLEMENTARY FILE S1. References for the data set.

Dörr, A.J.M. & Scalici, M. (2013) Revisiting reproduction and population structure and dynamics of *Procambarus clarkii* eight years after its introduction into Lake Trasimeno (Central Italy). Knowledge and Management of Aquatic Ecosystems, 408, 10–16. DOI:10.1051/kmae/2013045

66 Biogeographia 31: 55–72 Boggero et al., 2016

Marchetto, A., Rogora, M., Boggero, A. et al. (2009) Response of Alpine lakes to major environmental gradients, as detected through planktonic, benthic and sedimentary assemblages. Advances in Limnology, 62, 419–440. DOI:1612-166X/05/0060-0001

