ABSTRACT

The paper describes a system for the automatic consolidation of Italian legislative texts to be used as a support of an editorial consolidating activity and dealing with the following typology of textual amendments: repeal, substitution and integration. The focus of the paper is on the semantic analysis of the textual amendment provisions and the formalized representation of the amendments in terms of metadata. The proposed approach to consolidation is metadata-oriented and based on Natural Language Processing (NLP) techniques: we use XML-based standards for metadata annotation of legislative acts and a flexible NLP architecture for extracting metadata from parsed texts. An evaluation of achieved results is also provided.

Keywords

Natural Language Processing, textual amendments, XML representation, metadata extraction, consolidation of legal text

1. INTRODUCTION

The consolidation of the legislative act during its life cycle represents a central research area in the AI and Law field. If on the one hand fully automatic consolidation still appears a challenging task, on the other hand it is widely known that consolidation can be carried out semi–automatically with the help of automatic procedures supporting different steps of the consolidation process. As a matter of fact, recent information technologies increasingly helped to facilitate the creation and updating of consolidated versions of the legislation currently in force. According to the recently published Interim Report of the Working Group on “Consolidation” of the European Forum of Official Gazettes [1], it appears that in Belgium and Germany some steps of the consolidation process are supported by automatic procedures, although the modification of the text is manually done; in Slovakia dedicated software is being developed to carry out consolidation in a fully automatic way. In Japan, an automatic consolidation system for Japanese statutes has been developed based on the formalization and experts’ knowledge about consolidation [2].

This work deals with automatic consolidation of legislative texts as a support of an editorial consolidating activity and copes with the following textual amendments: repeal, substitution and integration. The consolidation process consists in the integration within a single text of the provisions of the original act together with all subsequent amendments to it. Different issues are at work here from the formal XML representation of legislative acts to accessing the content of legislative acts taken as input which requires understanding the linguistic structures of the text. Although legal language is much more constrained than ordinary language, nevertheless its syntactic and lexical structures still pose a considerable challenge for state–of–the–art linguistic technologies. In our view, the general consolidation workflow (see Figure 1) can be seen as organized into the following steps:

1. semantic analysis of the textual amendment provisions;
2. formalized representation of the amendments by a metadata set;
3. proper text modifications performed on the basis of the metadata interpretation and
4. production of the consolidated text.

In this paper, we report the results of a joint research effort carried out by ITTIG-CNR (Institute of Legal Information Theory and Techniques of the Italian National Research Council) in collaboration with ILC-CNR (Computational Linguistics Institute) aimed at developing a semi-
automatic consolidation system to propose a candidate consolidated text which has to be validated by the editorial staff in charge of the process who can accept, correct or refuse the automatically generated text. In particular, in this paper we will focus on steps 1. and 2. of the consolidation work flow (namely semantic analysis and formalised representation of the provision text), which are the most critical ones of the whole work flow.

The proposed approach to consolidation is metadata–oriented and based on Natural Language Processing (NLP) techniques. Our strategy makes use of i) XML–based standards for metadata annotation of legislative acts, and ii) a flexible NLP architecture for extracting metadata from parsed texts. In what follows, after a short description of the results of a preliminary analysis and classification of textual amendments in Italian legislative acts (section 2), the metadata scheme adopted for the representation of consolidated texts and the metadata extraction process are described in detail respectively in sections 3 and 4, while the evaluation of the extraction system is presented in section 5. In section 6 current directions of research and development are presented; finally some conclusions are reported (section 7).

2. ANALYSIS AND CLASSIFICATION OF TEXTUAL AMENDMENTS

As a preliminary step, an accurate study has been carried out on the typology of textual amendment provisions which are present in Italian legislative texts, involving both structure and word modifications. To this specific end, a representative sample of about 800 textual amendment provisions has been collected, where each provision has been classified at three different levels:

1. amendment type, namely repeal, integration or substitution;
2. typology of modified objects, e.g. partitions, periods or words;
3. sub-type of the specific partitions (article, paragraph, etc.) or linguistic subdivisions (period, “alinea”, etc.) involved in the amendment.

All the collected examples have been classified with respect to the parameters listed above, with particular attention to the variety of linguistic expressions used by the legislator to convey the different amendment types.

3. METADATA SCHEME

The national standard defined by the NormeInRete (NIR) project¹ has been considered as a starting point, since it provides specifications for describing the functional aspects of a norm; in this context a legislative text is considered as a set of provisions rather than partitions. In case of provisions concerning text modification, a set of metadata has been defined describing the norm to be modified (with a unique identifier), the text to be amended (“novellando”), the text to be inserted (“novella”), etc. From the analysis of the collected sample of textual amendment provisions, the NormeInRete standard turned out to be not sufficient to describe adequately the modifying action to be performed.

Before going into details, a number of essential features of the NormeInRete national standard have to be highlighted:

1. it aims to describe all properties of a document in an independent and exhaustive way: in the case of a modifying act, it should express the activity without accessing or intervening on the act under modification;
2. it provides specific rules to construct IDs of the XML elements;
3. it does not deal with either the period as an XML element or mandatory ID for some partitions (e.g. partition title) and for linguistic subdivisions (“alinea”, closing paragraph, etc.).

Different from other countries, in the Italian legal system modifications not only concern formal partitions, but also linguistic sub–parts up to single words, so they may contain references to objects which have no mandatory ID or are not elements.

Furthermore, in many cases the ID value, even for partitions where it is mandatory, cannot be predicted, because some hierarchical levels in the citations can be missing (see for instance “letter a) of art. 5”, where no explicit paragraph indication is provided), and also because the relative ordering of partitions (last, second–last, etc.) is often used. On the basis of these considerations, an extension of the NIR national scheme has been designed, formalized in a proposal which was submitted to the national XML standards Working Group and which is currently implemented in terms of proprietary metadata. The proposal is based on the following principles:

1. the area delimiting a modification is, first of all, described by a set of nested containers;
2. the hierarchy of containers goes from formal partitions to linguistic sub–parts;
3. each container can be identified by a unique label (e.g. point c.) or a position in the list, expressed by an ordinal number (e.g. second period) or through its relative order (e.g. last paragraph);
4. within the narrowest container, the exact point can be indicated through absolute positions (start, end) or relative positions (after, before, etc.) with respect to existing words within quotes;

¹http://www.normeinrete.it
5. Consequently, the container where the modification occurs is indicated firstly by the narrowest partition whose ID can be calculated; other elements can be possibly nested in this element, each of which is identified in terms of a given type (e.g. paragraph, “alinea”, period, etc.) and a label or a position.

In particular, the extensions are concerned with the following cases:

- the insertion of a set of elements, the so-called “border”, that can be recursively nested, for representing narrower containers of a norm, since it can point at a single partition ID. Such new element has the attributes related to a container type and a label or position;
- the explicit mention of the type of “novella” or “novellando” that is the entity (partition, linguistic sub-part or words) involved in the modification.

The extended metadata set describing a textual modifying provision is reported in Table 1, where the hierarchical level is indicated with dash (“–”) indentation and attributes are separated by a colon (“:”) from the relative tag. Note that all metadata are empty elements, without any textual content, and the information is conveyed in terms of attributes.

With such an extension the modification is completely described and the following functions can be automatically carried out:

1. Isolating the narrowest container, even when the ID is missing, by functionalities able to identify a period, searching for an element with a given label, or calculating its absolute or relative position;
2. Positioning at the boundaries or within the container, through searching a given string of characters.

Therefore, through automatic interpretation of these metadata, it is possible to perform the above mentioned modifications on the text and to submit a proposal for an updated text for the editorial activity.

Once the metadata scheme for the representation of textual amendments has been defined, it was applied to the representative sample of textual amendments collected during the analysis stage. The final result is a manually annotated corpus of textual amendments (henceforth referred to as “gold standard”), to be used as a reference corpus for the development of the metadata extraction system (see below).

4. METADATA EXTRACTION

Metadata extraction is performed by the MELT (“Metadata Extraction from Legal Texts”) system, whose overall architecture is depicted in Figure 2.

MELT has a three-module architecture composed by:

1. the xmLeges tools in charge of preparing the text for further processing stages, by a) identifying normative references, b) analyzing the formal structure of the normative act, and c) classifying individual provisions into coarse-grained classes. This classification is aimed at identifying amendment provisions for them to be selected and passed to further processing stages;
2. Metadata extraction is performed by the MELT (“Metadata Extraction from Legal Texts”) system, whose overall development of the metadata extraction system (see below).
3. The extended metadata set describing a textual modifying provision is reported in Table 1, where the hierarchical level is indicated with dash (“–”) indentation and attributes are separated by a colon (“:”) from the relative tag. Note that all metadata are empty elements, without any textual content, and the information is conveyed in terms of attributes.

With such an extension the modification is completely described and the following functions can be automatically carried out:

1. Isolating the narrowest container, even when the ID is missing, by functionalities able to identify a period, searching for an element with a given label, or calculating its absolute or relative position;
2. Positioning at the boundaries or within the container, through searching a given string of characters.

Therefore, through automatic interpretation of these metadata, it is possible to perform the above mentioned modifications on the text and to submit a proposal for an updated text for the editorial activity.

Once the metadata scheme for the representation of textual amendments has been defined, it was applied to the representative sample of textual amendments collected during the analysis stage. The final result is a manually annotated corpus of textual amendments (henceforth referred to as “gold standard”), to be used as a reference corpus for the development of the metadata extraction system (see below).

Table 1: Metadata set common to each textual amendment provision

<table>
<thead>
<tr>
<th>Metadata</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pos</td>
<td>Information on the amending provision</td>
</tr>
<tr>
<td>pos:xlink</td>
<td>ID reference to the amending provision</td>
</tr>
<tr>
<td>norm</td>
<td>Information on the norm to be amended</td>
</tr>
<tr>
<td>norm:xlink</td>
<td>URN reference to the norm</td>
</tr>
<tr>
<td>– pos</td>
<td>Further information on the norm</td>
</tr>
<tr>
<td>– pos:xlink</td>
<td>URN reference to the norm with the partition ID</td>
</tr>
<tr>
<td>– border</td>
<td>Information on further narrower container</td>
</tr>
<tr>
<td>– border:type</td>
<td>Container type (e.g. point, “alinea”, period, etc.)</td>
</tr>
<tr>
<td>– border:num</td>
<td>Container label expressed by a number or a letter</td>
</tr>
<tr>
<td>– border:ord</td>
<td>Container position expressed by an ordinal (e.g. 2nd) or a relative (e.g. last) number</td>
</tr>
<tr>
<td>position</td>
<td>Information on the specific modifying point within the narrowest container</td>
</tr>
<tr>
<td>– pos</td>
<td>Information on a string (quoted) and a bound of the deleting or inserting point</td>
</tr>
<tr>
<td>– pos:xlink</td>
<td>ID reference to the string, a bound of which is the beginning of the modifying text</td>
</tr>
<tr>
<td>– pos:where</td>
<td>Specific bound of the string or container (before, after, start, end)</td>
</tr>
<tr>
<td>novellando</td>
<td>Information on the outgoing text</td>
</tr>
<tr>
<td>– type</td>
<td>Information on the “novellando” type</td>
</tr>
<tr>
<td>– type:value</td>
<td>“novellando” type (e.g. article, paragraph, “alinea”, period, words, etc.)</td>
</tr>
<tr>
<td>– pos</td>
<td>Information on the outgoing string (in quotes)</td>
</tr>
<tr>
<td>– pos:xlink</td>
<td>ID reference to the string that is either the outgoing text, or the beginning or ending of the outgoing text</td>
</tr>
<tr>
<td>– role</td>
<td>Information on the meaning of the string</td>
</tr>
<tr>
<td>– role:value</td>
<td>String role: beginning (from) or ending (up to) of the outgoing text</td>
</tr>
<tr>
<td>novella</td>
<td>Information on the incoming text</td>
</tr>
<tr>
<td>– type</td>
<td>Information on the “novella” type</td>
</tr>
<tr>
<td>– type:value</td>
<td>Novella type (e.g. article, paragraph, “alinea”, period, words, etc.)</td>
</tr>
<tr>
<td>– pos</td>
<td>Information on the incoming string (quoted)</td>
</tr>
<tr>
<td>– pos:xlink</td>
<td>ID reference to the incoming string</td>
</tr>
</tbody>
</table>

42
Figure 2: MELT overall architecture

2. the AnIta tools, a suite of Natural Language Processing tools for the analysis of Italian texts, in charge of
 a) the linguistic analysis of the selected provisions (going from tokenization and morphological analysis to
 shallow syntactic parsing), and b) their semantic annotation with the typology of semantic tags reported
 in Table 1;

3. an xml Converter, in charge of the conversion of the in–
 line annotations produced by the AnIta tools into the
 final XML metadata representation format described
 in Section 3.

The system can be seen as a development of SALEM
(Semantic Annotation for LEgal Management [3]), an NLP–
based system developed for automatically producing a se-
monic annotation of Italian legal texts (including modifi-
cation provisions) which was used as an advanced module
of the NIREditor (now xmLegesEditor) [4] to support the
legal drafting process. The original system has been per-
sonalized in a number of different aspects, mainly related
with a) the input type the system has to deal with, and b) range and typology of metadata to be extracted. Namely,
while legal text analysis in the SALEM framework is driven
by a broad ontology of legislative provision types (including,
among others, obligations, permissions, prohibitions, etc.),
the current system has been intended to focus on amend-
ment provisions only. On the other hand, the typology of
metadata to be extracted is much wider in this case, being
instrumental to the semi–automatic generation of consoli-
dated versions of the legislation currently in force.

4.1 Pre–processing of the amending act with
xmLeges tools

As Figure 2 shows, the first step of the metadata extrac-
tion process is performed by the xmLeges tools [5] operating
through the following stages: transforming the raw norma-
tive text into an XML file where the formal structure of
the text is made explicit (xmLegesMarker); detecting norma-
tive references (xmLegesLinker); classifying provisions into
macro–classes (xmLegesClassifier). Since in the present case
we are dealing with amendment provisions only, all other
provision types recognized at this stage are discarded from
further processing.

This pre–processing step is also in charge of preparing
the text for the linguistic analysis by packing the content
of normative references and quoted text and by replacing
it with placeholders to be used subsequently to recover the
original text. For instance, the repeal provision

“All’articolo 1, comma 1, della legge 8 febbraio
2001, n. 12, la lettera d) è abrogata” (In article
1, paragraph 1, of the act 8 February 2001, n.
12, letter d) is repealed)

is transformed into

“All’ REF mod31-rif2#art1-com1, la lettera d) è
abrogata” (In REF mod31-rif2#art1-com1, letter
d) is repealed)

where it can be noticed that the provision text has been
noticeably simplified without information loss. The rele-
ance of this choice is motivated by the notorious complex-
ity of legal language, characterised by the frequency of oc-
currence of deep chains including a high number of embed-
ded prepositional chunks (typically corresponding to intra-
textual and inter–textual cross–references) which make the
legal text quite difficult to be processed (see [11] for details).

4.2 Semantic processing of the amending act

The text pre–processed by the xmLeges tools is then passed
to the Natural Language Processing modules (hereafter, re-
ferred to as AnIta tools) [10] which carry out the text anal-
ysis in two different steps:

1. the input text is first parsed by the linguistic modules
 in the dashed box of Figure 2 providing as output a
 shallow syntactic analysis of the amendment provision;

2. the shallow parsed text is then fed into the Seman-
tic Analysis Component, with the result of deriving
 and making it explicit the semantic content implicitly
 stored in the analysed provision.

4.2.1 Linguistic analysis

The linguistic analysis stage creates the data structures
on which the further processing stage operates. During this
step, the input text is first tokenized and normalized for
dates, abbreviations and multi–word expressions; the nor-
malized text is then morphologically analyzed and lemmat-
ized, using an Italian lexicon specialized for the analysis
of legal language; finally, the text is POS–tagged and shal-
low parsed into non–recursive syntactic constituents called
“chunks”.

In the architecture of MELT, text “chunking” plays a cen-
tral role, representing the very starting point of metadata
extraction in its own right. It is carried out through a bat-
tery of finite state automata (CHUG–IT [6]), which takes as
input a morphologically analysed and lemmatised text and
segments it into an unstructured (non–recursive) sequence
of syntactically organized text units, the so–called “chunks”.
A chunk is a textual unit of adjacent word tokens sharing the
property of being related through dependency relations (es.
pre–modifier, auxiliary, determiner, etc.). A sample out-
put of this syntactic processing stage is given in Figure 3,
where the input sentence is segmented into eight chunks. It
can be noted that each chunk contains information about its
type (e.g. prepositional chunk or P
C
, nominal chunk
or N
C
; finite verbal chunk or PUNCT
C
, punctuation chunk or
PUNC
C
), its lexical head (identified by the label potgove)
and any occurring determiner, auxiliary verb or preposition.
A rule of the form "< border:type> lettera</ border:type> e' abrogata." is processed in our system as follows:

```
<chunk type="MOD31-RIF1" name="ART1-CONL" letter="d"> e' abrogata.</chunk>
```

where the value of `norm` is the placeholder of the amending act generated during the pre-processing stage by the xMLeges tool, and where the values of `border: type` and `border: num` jointly identify the specific partitions of the norm being modified. In this specific case, the `novellando` (i.e. the text to be amended) coincides with the `border` of the norm to be modified.

The final metadata extraction step is performed by the `xMl Converter`, a component in charge of converting the in-line annotations produced by the AnIta tools into a metadata description conformant to the XML metadata representation specifications detailed in Section 3.

4.2.3 Related work

The approach to metadata extraction described in this paper is closely related to the task of Information Extraction as defined in the literature. Information Extraction (IE) is the task of identifying, collecting and normalizing relevant information from natural language texts while skipping irrelevant text passages; IE systems thus do not attempt to offer a deep, exhaustive linguistic analysis of all aspects of a text; rather, they are designed to “understand” only those text passages that contain information relevant for the task at hand.

In our system, we perform the mapping from natural language sentences in the amendment provisions to corresponding domain knowledge: in particular, the resulting mappings turn free text into target knowledge structures, containing crucial information such as the norm being modified, the amending and the amended text, etc. Target knowledge structures are not arbitrary, but rather predefined by an
ontology providing a formal specification of a shared understanding of the domain of interest (see Section 3). Operationally, our system relies on document pre-processing and extraction rules to identify and interpret the information to be extracted.

[7] reports similar work concerned with the automatic semantic interpretation of legal modificatory provisions: based on a taxonomy of modificatory provisions compliant to the NormeInRete standard, a system for the identification of semantic frames associated with a modification type has been developed. The developed system shares a number of features with our approach. In both cases, NLP technologies are resorted to: semantic analysis is carried out on the linguistically (syntactically) pre-processed text on the basis of a rule-based approach. The main difference is concerned with the starting point of the semantic analysis stage: [7] relies on a deep syntactic analysis of the provision text, whereas our system starts from the shallow syntactically parsed text, whose output is underspecified. [7] motivates this choice on the basis of the fact that a range of complex syntactic phenomena (e.g., coordinated structures and relative clauses) that cannot be properly accounted for in a shallow parsing approach can be covered if deep parsing is resorted to. Obviously, we can only agree with such a motivation. However, on our view of things, there are two main reasons for opting for a different approach. First, in the shallow parsed text information about the linear order of identified chunks is still available, which makes it possible to enforce linear precedence constraints which otherwise would be very difficult to be expressed: these constraints are very useful to test for the presence of low level textual features such as punctuation. Second, and most importantly here, currently the performance of state-of-the-art chunks and dependency parsers differs significantly: for chunking the F-score of state-of-the-art systems ranges between 91.5 and 92.5 (with the precision score going from 88.82% to 94.29%, see [12]), whereas the performance of dependency parsers is much less reliable. In the CoNLL 2007 Shared Task on Dependency Parsing [13], the average Labelled Attachment Score (LAS) over all systems varies from 68.07 for Basque to 80.95 for English, with top scores varying from 76.31 for Greek to 89.61 for English.

Given the encouraging results we achieved with our system so far (see Section 5), we believe that for metadata extraction from the amending act the shallow parsed text is a sufficient and even preferable starting point. In particular, in our approach a better balance between accuracy and robustness can in principle be achieved; it goes without saying that this statement needs careful evaluation. However, this is in line with [8] who claim that in many natural language applications it is sufficient to use shallow parsing: this information type has been found successful in tasks such as information extraction and text summarisation (concerning the legal knowledge management, see among others [9]).

4.3 An example

In this section, each step of the metadata extraction workflow is exemplified. As Figure 1 illustrates, the starting point is an amending act whose amendment provisions (such as the one reported below) are subject to further processing stages.

Original input:

```xml
<mod id="mod1">
  Nell' articolo 13–bis del testo unico delle imposte sui redditi, approvato con decreto del Presidente della Repubblica 22 dicembre 1986, n. 917, e successive modificazioni, concernente detrazioni per oneri, al comma 1, lettera c), secondo periodo, dopo le parole: “dalle spese mediche” sono inserite le seguenti: “e di assistenza specifica (in the article 13-bis of the consolidated text on the income taxes, approved by the President of Republic decree 22 December 1986, n. 917, and subsequent modifications, relating to tax allowances, in paragraph 1, point c), second period, after the words: “medical costs” the following ones are inserted: “and of treatment”.
</mod>
```

The `xmlLeges tools` are in charge of pre-processing the raw text (as described in Section 4.1) and provide as output the XML marked-up text exemplified below:

xmlLeges tools output:

```xml
<mod id="mod1">
  Nell' <ref xlink:href="urn:nir:stato:testo.unico; imposte.redditi:1986-12-22;917#art13bis">articolo 13-bis del testo unico delle imposte sui redditi</ref>, approvato con decreto di assistenza specifica (in the article 13-bis of the consolidated text on the income taxes, approved by the President of Republic decree 22 December 1986, n. 917, e successive modificazioni, concernente detrazioni per oneri, al comma 1, lettera c), secondo periodo, dopo le parole: "dalle spese mediche" sono inserite le seguenti: "e di assistenza specifica".
</mod>
```

In turn, the XML marked-up text is transframed as follows, for it to be processed by the AnIta tools in charge of the semantic analysis stage:

InPut of the AnIta tools:

```xml
Nell' <ref xlink:href="urn:nir:stato:testo.unico; imposte.redditi:1986-12-22;917#art13bis">articolo 13-bis del testo unico delle imposte sui redditi</ref>, approvato con decreto del Presidente della Repubblica 22 dicembre 1986, n. 917, e successive modificazioni, concernente detrazioni per oneri, al comma 1, lettera c), secondo periodo, dopo le parole: "dalle spese mediche" sono inserite le seguenti: "e di assistenza specifica".
```

As reported in Section 4.2.2, the metadata annotation of the pre-processed amending provision operates on the chunked representation of the input text. The output of the Semantic Annotation Component is exemplified below:

XML in-line metadata annotation:

```xml
<integration>
  <norm>Nell' <ref xlink:href="urn:nir:stato:testo.unico; imposte.redditi:1986-12-22;917#art13bis">articolo 13-bis del testo unico delle imposte sui redditi</ref>, approvato con decreto del Presidente della Repubblica 22 dicembre 1986, n. 917, e successive modificazioni, concernente detrazioni per oneri, al comma 1, lettera c), secondo periodo, dopo le parole: "dalle spese mediche" sono inserite le seguenti: "e di assistenza specifica".</norm>
</integration>
```

In this section, each step of the metadata extraction workflow is exemplified. As Figure 1 illustrates, the starting point is an amending act whose amendment provisions (such as the one reported below) are subject to further processing stages.
inserite le seguenti: <novella>"QTS MOD1-VIR2</novella>".
</integration>

The in-line metadata annotation exemplified above is then converted by the xml Converter into the XML final representation format described in Section 3, as exemplified below:

< dsp:integration>
 < dsp:pos xlink:href="#mod1" />
 < dsp:norm xlink:href="urn:nir:stato:testo.unico;imposte.redotti:1986-12-22;917"/>
 < dsp:pos xlink:href="urn:nir:stato:testo.unico;imposte.redotti:1986-12-22;917#art13bis"/>
 < dsp:subarg>
 < ittig:border type="comma" num="1" >
 < ittig:border type="lettera" num="c" >
 < ittig:border type="periodo" ord="2" >
 < ittig:border/>
 </ ittig:border>
 </ ittig:border>
 </ ittig:border>
 </ dsp:subarg>
</ dsp:norm>
</ dsp:position>
< dsp:novella>
 < dsp:pos xlink:href="#mod1-vir2" />
 < dsp:subarg>
 < ittig:type value="parole" />
 </ dsp:subarg>
 < dsp:novella>
</ dsp:integration>

Note that, independently from the order in which the different “border” values are expressed in the amendment provision text, within the resulting metadata description they are organised hierarchically from the broadest to the narrowest one.

5. EVALUATION OF RESULTS

The system has been evaluated on a sample of textual amendment provisions which were selected as representative of the typology of textual amendment subtypes and of the metadata to be extracted. This sample includes both structure and word modifications: it is representative of the three typologies of textual amendments considered (namely repeal, integration and substitution), with particular attention to the different typologies of modified objects (partitions, periods, words, etc.) and their linguistic expression within the text. The test corpus, constituted by 147 amendment provisions, was collected by law experts at ITTIG–CNR, who were organised hierarchically from the broadest to the narrowest one.

The aim of the evaluation was to assess the system’s reliability in identifying, for each provision subtype, all the metadata that are relevant for that provision and are instantiated in the text. In particular, Table 3 records for each provision subclass the total number of metadata to be identified in the test corpus; this value was then compared with the number of metadata correctly identified by the system and the total number of answers given by the system. Here, Precision is scored as the number of correctly extracted metadata (TP) returned by MELT over the number of expected answers (TP+FN).

Tables 3 and 4 summarize the results of the metadata extraction task. The aim of the evaluation here was to assess the system’s reliability in identifying, for each provision subtype, all the metadata that are relevant for that provision and are instantiated in the text. In particular, Table 3 records for each provision subclass the total number of metadata to be identified in the test corpus; this value was then compared with the number of metadata correctly identified by the system and the total number of answers given by the system. Here, Precision is scored as the number of correctly extracted metadata (TP) returned by MELT over the number of expected answers (TP+FN).

Table 4 nicely complements the information contained in Table 3 by providing the same data organized differently, i.e. by metadata type. By comparing the results in the two tables, it can be noticed that no substantial differences in the metadata extraction performance are observed across the different provision subclasses dealt with (Table 3). On the other hand, results in Table 4 make it possible to identify the areas of the grammar which need further improvements. Concerning the latter, the lowest recall values are observed with respect to the “Position” metadata, in charge of indicating the exact point within the text where the modification should be performed. This appears to originate from the high linguistic variability through which “Position” informa-
tion is expressed in legal texts; as a matter of facts, the different lexico–syntactic realizations of the positions where the text of the amendment (i.e. “Novella”) had to be inserted made the definition of specific rules quite a challenging task.

It is interesting to note however that, on average, precision is higher than recall, ranging between 1 and 0.983; this means that the MELT system is significantly reliable in the answers it returns.

6. CURRENT DIRECTIONS OF RESEARCH AND DEVELOPMENT

The metadata extraction component has been integrated in the XMLeges-Editor\(^2\) and is currently being tested at some Public Administrations: this is the first step of the process for assigning metadata to the textual modifications. The editorial activity is also supported by a facility for editing the metadata generated by automatic extraction, allowing their validation as well as possible integrations and corrections.

The whole consolidation process has been studied and designed and it is under construction; currently several components have been already developed. The consolidation workflow is completed by a specific metadata interpreter able to: a) access an amending act; b) localize, on the text to be amended, the portion under modification, and, c) perform a proper mark–up of deleted and/or inserted text. Here below such workflow is described.

After the insertion, and the possible correction, of extracted metadata into the proper section of the XML document, the amending act can be saved. In the designed workflow, this operation is performed by a CMS (Content Management System) in a centralized repository. The environment is powered by a native XML search engine (eXist), able to perform selections on the whole corpus exploiting completely the document mark-up. This search engine will be configured with specific queries, useful in the consolidation process: a) to retrieve all the acts to be amended and, for each of them, b) to extract all the active modification metadata to be applied. This retrieval process is deterministic since such queries exploit the XML structure of the active modification metadata which include a URN-based identifiers of the amending act.

The modifications metadata will be extracted and ordered according to the application date; at this point, the interpreter can be activated according to the following steps:

1. first of all it extracts the formal partition whose ID is specified in the metadata element “norm”;
2. from this element, it extracts the first available child container (through the “border” tag) that satisfies both the given type as well as the label or the position; this step is repeated for all nested containers;
3. then, if necessary, it extracts the indicated period;
4. afterwards, the exact position, referred also to other parameters (start/end or words before/after), of the deleting or inserting operation is identified; in case of abrogation or substitution the outgoing text is identified as well;
5. and, finally, the possible outgoing and incoming text are marked–up and inserted in a multi–version format.

The result, in fact, is a multi–version document, that is a unique XML object that contains all the life cycle of the act. The container of each amended text portion has an attribute that indicates the in-force time interval.

Together with the generation of a consolidated text, the procedure will fill also the relative metadata set of the passive modification. As previously pointed out, in the Italian standard any document is autonomous and self-explaining. The following information (passive metadata, in large part derived by the active metadata set) will be reported:

- the type of the amendment (repeal, substitution or integration);
- the norm (via URN) and its partition (via ID) that caused the amendment;
- the “novellando” (text to be amended) and/or “novella” (amending text) components of the amendment, through links to their container IDs.

Moreover the life cycle of the act will be updated properly with event dates and passive relations.

As the metadata extractor, the interpreter will be integrated in the xmLeges-Editor which provides functionalities for verifying and correcting the proposed consolidated text and related metadata. The verification of the consolidated text correctness is facilitated by the application of specific style sheets on the multi–version XML document. On the basis of the original text, any outgoing text (deleted or substituted) is shown in red while the incoming one is presented

<table>
<thead>
<tr>
<th>Metadata class [type]</th>
<th>Total</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
<th>Prec</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm</td>
<td>146</td>
<td>144</td>
<td>2</td>
<td>2</td>
<td>0.986</td>
<td>0.986</td>
</tr>
<tr>
<td>Border :type</td>
<td>200</td>
<td>186</td>
<td>0</td>
<td>14</td>
<td>1.0</td>
<td>0.938</td>
</tr>
<tr>
<td>Border :num</td>
<td>193</td>
<td>177</td>
<td>3</td>
<td>16</td>
<td>0.983</td>
<td>0.917</td>
</tr>
<tr>
<td>Novellando :type</td>
<td>98</td>
<td>97</td>
<td>1</td>
<td>1</td>
<td>0.990</td>
<td>0.990</td>
</tr>
<tr>
<td>Novellando :pos</td>
<td>39</td>
<td>39</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Novellando :role</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Novella :type</td>
<td>84</td>
<td>81</td>
<td>0</td>
<td>3</td>
<td>1.0</td>
<td>0.964</td>
</tr>
<tr>
<td>Novella :pos</td>
<td>85</td>
<td>82</td>
<td>0</td>
<td>3</td>
<td>1.0</td>
<td>0.965</td>
</tr>
<tr>
<td>Position :where</td>
<td>52</td>
<td>46</td>
<td>0</td>
<td>6</td>
<td>1.0</td>
<td>0.885</td>
</tr>
<tr>
<td>Position :pos</td>
<td>24</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>1.0</td>
<td>0.875</td>
</tr>
<tr>
<td>Total</td>
<td>922</td>
<td>874</td>
<td>6</td>
<td>48</td>
<td>0.993</td>
<td>0.948</td>
</tr>
</tbody>
</table>

Table 4: Metadata extraction results by metadata type.
in green and, for each of them, a punctual note with the in–force interval is inserted. Similarly the HTML document exportation for the browser is generated. Moreover it is possible to show passive metadata set related to each amended text portion and, through specific metadata forms and/or the normal editing functions a legal expert will be able to correct the consolidated text proposal.

7. CONCLUSIONS

The research activity described in this paper addresses the challenging task of automatic consolidation of the legislative act, whose final outcome is expected to be the proposal of a consolidated text, obtained through metadata interpretation, to be submitted to the editorial activity.

The tools developed are already being used with satisfying results in several editorial activities and in particular, in the production of in–force normative systems in some Italian Regions (Campania and Molise). The total time saving, in combination with the control and congruity of the inserted information, has been appreciated by the users. Even if a measure of the time and error saving has not been produced yet, current experiments carried out by the editorial staffs proved a qualitative effectiveness of the system, which is able to already reduce by more than 60% their whole efforts of the consolidation process related to textual amendments, covering a relevant number of the modification cases. This percentage can be increased by enlarging the coverage of the grammar in charge of the semantic analysis of amendment provisions as well as by completing the functions to support the consolidation process. Note that some manual efforts will be always needed to verify the results of the automatic facilities and to cope with some inaccuracies of the legislator himself.

The following extensions of this work will involve:

- the recognition of the application date wording and the extraction of the related metadata;
- the analysis of multiple text modifications, namely amendments concerning more than one partition or word occurrence as well as combined amendments within the same provision text. In spite of the fact that such an extension can be complex, we believe that for particularly significant sub-types of provisions it can be successfully carried out. This is the case in which the same type of amendment is applied to different portions of the act (ex. “art. 5 and 7 of the act n. 1/2000 are repealed”), or in which different types of amendments apply to the same act (ex. “in the act 1/2000, art. 5 is repealed and art. 7 is substituted by the following ...”);
- the integration, with possible adaptations, in the Editor of other tools developed in the Italian standards environment: an intelligent XML differences extractor JNDiff (to detect and show only the differences between two versions of the same act) and a parallel text formatter TafWeb (to highlight the partitions which are unchanged or have been changed between two versions)3.

Results obtained so far are encouraging in terms of the quality and robustness of the current implementation. However, there is clearly more work needed for this metadata extraction prototype to be extensively used on large law text corpora.

8. REFERENCES

Workshop Semantic Processing of Legal Texts, Marrakech, Morocco, May 26-1 June 2008, CD-ROM.

