Oesophageal atresia: prevalence, prenatal diagnosis and associated anomalies in 23 European regions

Rikke Neess Pedersen, Elisa Calzolari, Steffen Husby, Ester Garne, EUROCAT Working group*

ABSTRACT

Objective To describe prevalence, prenatal diagnosis and epidemiological data on oesophageal atresia from 23 well-defined European regions and compare the prevalence between these regions.


Settings Twenty-three participating registries based on multiple sources of information including information about live births, fetal deaths with gestational age ≥20 weeks and terminations of pregnancy.

Patients 1222 cases of oesophageal atresia in a population of 5 019 804 births.

Results The overall prevalence was 2.43 cases per 10 000 births (95% CI 2.30 to 2.57). There were regional differences in prevalence ranging from 1.27 to 4.55. Prenatal detection rates varied by registry from >50% of cases to <10% of cases. A total of 546 cases (44.7%) had an isolated oesophageal anomaly, 386 (31.6%) were multiple malformed and 290 (23.7%) had an association or a syndrome. There were 1084 live born cases (88.7%), 43 cases were fetal deaths and 95 cases were terminations of pregnancy. One-week survival for live births was 86.9% and 99.2% if the gestational age was ≥38 weeks and isolated oesophageal atresia was present. Males accounted for 57.3% of all cases and 38.5% of live born cases were born with gestational age <37 weeks.

Conclusion There were regional differences in prevalence of oesophageal atresia in Europe. Half of all cases had associated anomalies. Prenatal detection rate increased from 26% to 36.5% over the two decades. Survival in infants with isolated oesophageal atresia born at term is high.

INTRODUCTION

Oesophageal atresia is a congenital anomaly of the oesophagus and in most cases involves the trachea. The prevalence in reported case series varies from 1 in 2500 to 1 in 4500 births.1–3 The anomaly arises from a developmental disruption with faulty separation of the embryonic foregut into trachea and oesophagus during the fifth to sixth week of embryonic life. In 78–90% of reported cases there is a tracheo-oesophageal fistula between the lower segment of the oesophagus and trachea (gross type C).4–14 The aetiology of oesophageal atresia is unknown. Different environmental factors have been suggested to play a role in the development of oesophageal atresia.15

What is already known on this topic

► The prognosis after surgery is good in term infants with isolated oesophageal atresia.
► Prevalence varies in different populations and no changes in prevalence over time have been shown.
► The proportion of associated anomalies is high.

What this study adds

► Prevalence of oesophageal atresia has been stable over the last 20 years. The prevalence differs within European regions.
► The study characterizes the associated anomalies and documents their impact on mortality in patients with oesophageal atresia.
► Prenatal detection rates of oesophageal atresia are increasing; termination of pregnancy for isolated oesophageal atresia is very rare.

Associated anomalies are reported to be present in a high proportion of patients with oesophageal atresia.3–5 13–14 16–22 Associated anomalies can be chromosomal (Down’s syndrome, Edward’s syndrome (trisomy 18)), part of a genetic syndrome (CHARGE syndrome, Feingold syndrome and others), an association such as VACTERL-association or multiple anomalies without a pattern.

Survival with oesophageal atresia is only possible with surgical correction. Survival rates after surgery are reported to be around 90% including patients with severe associated anomalies and up to almost 100% in term infants without associated anomalies.17 20 23–25 Some studies only include cases referred for surgery and not the total population of live born cases with oesophageal atresia.

The aim of this study was to present data on prevalence, clinical characteristics and prenatal diagnosis of oesophageal atresia in Europe using a large European database of congenital anomalies (EUROCAT).

METHODS

The study is based on routinely collected data from 23 European registries of congenital anomalies (EUROCAT). The registries are population-based and cover geographically well-defined populations including all births from mothers residing in the

Arch Dis Child 2012;97:227–232. doi:10.1136/archdischild-2011-300597

227
Table 1: Number of cases, prevalence, number of cases with prenatal diagnosis and prenatal detection rate by registry

<table>
<thead>
<tr>
<th>Registry</th>
<th>Country</th>
<th>Years included</th>
<th>Total births</th>
<th>Total cases</th>
<th>Total prevalence* (95% CI)</th>
<th>Cases with prenatal diagnosis</th>
<th>% Prenatal diagnosis (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainz</td>
<td>Germany</td>
<td>1990–2006</td>
<td>59403</td>
<td>27</td>
<td>4.55 (3.13 to 6.61)</td>
<td>14</td>
<td>51.9 (33.9 to 69.4)</td>
</tr>
<tr>
<td>Odense</td>
<td>Denmark</td>
<td>1987–2006</td>
<td>110788</td>
<td>47</td>
<td>4.24 (3.1 to 5.84)</td>
<td>6</td>
<td>12.8 (6.1 to 25.2)</td>
</tr>
<tr>
<td>Emilia Romagna</td>
<td>Italy</td>
<td>1987–2006</td>
<td>540233</td>
<td>186</td>
<td>3.44 (2.97 to 3.96)</td>
<td>50</td>
<td>28.9 (21.0 to 33.9)</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>France</td>
<td>1987–2004</td>
<td>231322</td>
<td>75</td>
<td>3.24 (2.59 to 4.06)</td>
<td>27</td>
<td>36.0 (26.1 to 47.3)</td>
</tr>
<tr>
<td>Northern Region</td>
<td>UK</td>
<td>2000–2006</td>
<td>214037</td>
<td>65</td>
<td>3.04 (2.38 to 3.87)</td>
<td>35</td>
<td>53.8 (41.8 to 65.4)</td>
</tr>
<tr>
<td>Vaud</td>
<td>Switzerland</td>
<td>1989–2006</td>
<td>134746</td>
<td>39</td>
<td>2.89 (2.12 to 3.96)</td>
<td>12</td>
<td>30.8 (18.6 to 46.5)</td>
</tr>
<tr>
<td>Styria</td>
<td>Austria</td>
<td>1987–2005</td>
<td>228231</td>
<td>61</td>
<td>2.67 (2.08 to 3.43)</td>
<td>61</td>
<td>28.2 (18.8 to 37.9)</td>
</tr>
<tr>
<td>Wales</td>
<td>UK</td>
<td>1998–2006</td>
<td>288877</td>
<td>76</td>
<td>2.63 (2.10 to 3.29)</td>
<td>32</td>
<td>42.1 (31.5 to 53.4)</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>Netherlands</td>
<td>1987–2006</td>
<td>375050</td>
<td>94</td>
<td>2.51 (2.10 to 3.10)</td>
<td>25</td>
<td>26.6 (18.7 to 36.4)</td>
</tr>
<tr>
<td>Isle de Reunion</td>
<td>France</td>
<td>2002–2006</td>
<td>73023</td>
<td>17</td>
<td>2.33 (1.46 to 3.73)</td>
<td>17</td>
<td>59.5 (27.5 to 80.5)</td>
</tr>
<tr>
<td>Wessex</td>
<td>UK</td>
<td>1994–1996</td>
<td>341119</td>
<td>79</td>
<td>2.32 (1.86 to 2.89)</td>
<td>37</td>
<td>46.8 (36.2 to 57.8)</td>
</tr>
<tr>
<td>Saxony Anhalt</td>
<td>Germany</td>
<td>2000–2006</td>
<td>123241</td>
<td>28</td>
<td>2.27 (1.58 to 3.28)</td>
<td>28</td>
<td>48.6 (37.5 to 59.8)</td>
</tr>
<tr>
<td>Antwerp</td>
<td>Belgium</td>
<td>1993–1996</td>
<td>222265</td>
<td>50</td>
<td>2.25 (1.71 to 2.97)</td>
<td>50</td>
<td>54.5 (47.7 to 61.3)</td>
</tr>
<tr>
<td>Ukraine</td>
<td>Ukraine</td>
<td>2005–2006</td>
<td>54193</td>
<td>11</td>
<td>2.03 (1.14 to 3.83)</td>
<td>6</td>
<td>54.5 (27.7 to 78.9)</td>
</tr>
<tr>
<td>Trent</td>
<td>UK</td>
<td>1998–2006</td>
<td>549515</td>
<td>108</td>
<td>1.97 (1.63 to 2.37)</td>
<td>108</td>
<td>42.2 (34.2 to 50.5)</td>
</tr>
<tr>
<td>Dublin</td>
<td>Ireland</td>
<td>1987–2007</td>
<td>412564</td>
<td>81</td>
<td>1.96 (1.59 to 2.44)</td>
<td>81</td>
<td>49.7 (41.8 to 57.5)</td>
</tr>
<tr>
<td>Malta</td>
<td>Malta</td>
<td>1991–2006</td>
<td>71754</td>
<td>14</td>
<td>1.95 (1.17 to 3.27)</td>
<td>1</td>
<td>7.1 (1.7 to 31.9)</td>
</tr>
<tr>
<td>Tuscany</td>
<td>Italy</td>
<td>1988–2000</td>
<td>430462</td>
<td>60</td>
<td>1.86 (1.49 to 2.31)</td>
<td>12</td>
<td>15.0 (8.8 to 24.4)</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Spain</td>
<td>1993–2006</td>
<td>182683</td>
<td>30</td>
<td>1.64 (1.15 to 2.34)</td>
<td>15</td>
<td>50.0 (33.1 to 66.9)</td>
</tr>
<tr>
<td>Thames Valley</td>
<td>UK</td>
<td>1991–2006</td>
<td>140203</td>
<td>23</td>
<td>1.64 (1.10 to 2.46)</td>
<td>7</td>
<td>30.4 (15.6 to 51.1)</td>
</tr>
<tr>
<td>Cork and Kerry</td>
<td>Ireland</td>
<td>1997–2003</td>
<td>55630</td>
<td>8</td>
<td>1.44 (0.74 to 2.83)</td>
<td>3</td>
<td>37.5 (13.7 to 70.1)</td>
</tr>
<tr>
<td>South East Ireland</td>
<td>Ireland</td>
<td>1997–2005</td>
<td>54837</td>
<td>7</td>
<td>1.28 (0.63 to 2.63)</td>
<td>7</td>
<td>6.5 (3.7 to 10.1)</td>
</tr>
<tr>
<td>Zagreb</td>
<td>Croatia</td>
<td>1987–2006</td>
<td>125628</td>
<td>16</td>
<td>1.27 (0.79 to 2.07)</td>
<td>16</td>
<td>6.3 (1.5 to 28.7)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1987–2006</td>
<td>5019804</td>
<td>1222</td>
<td>2.43 (2.30 to 2.57)</td>
<td>293 of 887</td>
<td>33.0 (30.0 to 36.2)</td>
</tr>
</tbody>
</table>

The prevalence of oesophageal atresia in the 23 regions ranged from 1.27 per 10 000 births in Zagreb and 1.28 per 10 000 births in South East Ireland to 4.24 per 10 000 births in Odense and 4.55 per 10 000 births in Mainz.

*Rate per 10 000.

registry area. For further details on population coverage and registration methods see http://www.eurocat-network.eu. The registries are all based on multiple sources of information including hospital records, birth and death certificates and postmortem examinations, and include information about live births, fetal deaths with gestational age ≥20 weeks and termination of pregnancy after prenatal diagnosis of fetal anomaly (termination of pregnancy for fetal anomaly (TOPFA)). All structural anomalies, syndromes and chromosomal anomalies are included in the database except minor and poorly specified anomalies as defined by the EUROCAT exclusion list. Only cases with diagnosis of oesophageal atresia confirmed postnatally are included in the database, except for a few prenatally diagnosed TOPFA cases where postmortem examination was not performed.

All cases with oesophageal atresia coded with relevant WHO International Classification of Diseases 9 (ICD9) code (75030, 75031) or ICD10 code (Q39.0 and Q39.1) and delivered during 1987–2006 were included in this study. Not all registries covered all years.

Data items included in the analysis are: birth outcome, year of birth, infant sex, gestational age, time of diagnosis (pre or postnataally), death within the first week after birth and information on associated anomalies, syndromes or associations.

The EUROCAT flowchart for multiple anomalies was used to find the potential multiple anomaly cases. These cases were manually reviewed by a paediatrician (EG) and a geneticist (EC) and classified as isolated oesophageal atresia, multiple congenital anomalies (two or more major anomalies in different organ systems), chromosomal or non-chromosomal syndrome or association. Throughout this paper isolated oesophageal atresia is defined as oesophageal atresia gross type A–D without associated anomalies.

The total number of births covered by the 23 registries over the period of study years was 5 019 804.

Continuous variables were presented as means and SDs and categorical variables as numbers and percentages. We used the Student t test to test for differences between independent continuous variables and the χ² test to test for differences between categorical variables. Due to a non-Gaussian distribution of gestational age, the median and IQR and a Mann–Whitney test were used to compare groups. A p value <0.05 was considered statistically significant. STATA V.9.2 was used for the statistical analysis.

RESULTS

During the study period 1222 cases of oesophageal atresia from the 23 registries were recorded giving a total prevalence of 2.43 per 10 000 births (95% CI 2.30 to 2.57). Large regional differences were found in both the total prevalence of all cases of oesophageal atresia and in the prevalence of isolated oesophageal atresia (table 1 and figure 1).

The overall prevalence of oesophageal atresia in the two 10 year periods (1987–1996 and 1997–2006) was 2.37 and 2.46 per 10 000 births. This difference between the two decades did not reach statistical significance. For prevalence of oesophageal atresia, isolated oesophageal atresia and prenatal diagnosis over time see figure 1.

A total of 1084 of 1222 cases (88.7%) were live births, 43 (3.5%) were fetal deaths and 95 (7.8%) cases resulted in termination of pregnancy. Among the 1222 cases there were 700 males (57.3%) and 517 females (42.3%) giving a male:female ratio of 1:0.74. In four cases the sex was indeterminable and in one case sex was not recorded in the registry. A breakdown of infant sex and birth type for all subgroups is provided in table 2.
Associated anomalies

The 1222 cases were classified in three groups: 546 (44.7%) had an isolated oesophageal atresia, 386 (31.6%) had multiple anomalies, 290 (23.7%) had an association or syndrome (table 2). Syndromic cases or those with associated anomalies were subdivided in the following six groups: 117 (9.6%) had VACTERL association, 12 cases (1.0%) CHARGE syndrome, 56 cases (4.6%) had another non-chromosomal syndrome, 23 cases (1.9%) Down’s syndrome, 72 cases (5.9%) Edward’s syndrome and 10 cases (0.8%) another chromosomal syndrome. The most common associated anomalies among the 1222 cases were other gastrointestinal anomalies, congenital heart
Gestational age
Gestational age at birth was less than 37 weeks for 401 of the 1042 (38.5%) live born infants with data on gestational age. For live born infants with isolated oesophageal atresia 32.3% were born preterm and for live born infants with associated anomalies 40.6% were born preterm. For live born infants diagnosed postnatally with isolated oesophageal atresia 32.4% were born preterm.

Termination of pregnancy
Of the 351 prenatally diagnosed cases termination of pregnancy was performed in 95 cases (27.1%). Median gestational age at prenatal diagnosis was 20 weeks (18–23 weeks) and 34 cases were diagnosed before gestational age 20 weeks. There were 20 TOPFA cases with VACTERL, 28 with Edward’s syndrome, 31 were multiple malformed and only three TOPFA cases had isolated oesophageal atresia (table 2).

Survival
Data on 1-week survival was available from 19 registries (four registries were excluded as data on 1-week survival was missing for >10% of cases). One-week survival for all live births was 86.9% ranging from 92.9% for cases with isolated oesophageal atresia to 11.5% for cases with Edward syndrome (table 3). In 11 registry areas 1-week survival for isolated oesophageal atresia was 100% and lowest regional 1-week survival was 87.5% with isolated oesophageal atresia. One-week survival rate in live born cases with isolated oesophageal atresia, gestational age ≥38 weeks and data on survival was 99.2%.
DISCUSSION

This population-based case series describes in a standardised way a large number of cases with oesophageal atresia showing a total prevalence of 2.43 cases per 10 000 births. No differences in the prevalence over time were observed in this study, in accord with the EUROCAT statistical monitoring report for 2007 that did not show any pan-European increase in the incidence for oesophageal atresia for the years 1998–2007. 20

Large variations in prevalence were found within this European population suggesting that there is a real difference in prevalence of oesophageal atresia across Europe as the registries all followed a standardised methodology. It is known for other congenital anomalies such as facial clefts, neural tube defects and omphalocele that there are regional European differences in prevalence. 29–31 However, there may be some under ascertainment of oesophageal atresia cases in the registries with the lowest prevalence. There was no obvious pattern in the differences of prevalence in terms of a north–south or east–west gradient. We found large regional differences in both the prevalence of all cases and in cases with isolated oesophageal atresia. In registries with prevalence below 2 per 10 000 births the fraction of non-isolated cases was lower than that in the other registries. This finding might be due to under diagnosis of oesophageal atresia in cases with multiple anomalies and syndromic cases dying before the oesophageal atresia is recognised.

Depaep et al 16 analysed 442 cases of oesophageal atresia including cases with isolated tracheo-oesophageal fistula born during 1980–1988 and found an overall prevalence of 2.86 per 10 000 births, a significantly higher prevalence (p<0.01) compared with the total prevalence in the present study. This difference may be explained by their inclusion of cases with isolated tracheo-oesophageal fistula.

We found a high proportion of associated anomalies with only 44.7% of all cases with an isolated oesophageal atresia. This high proportion of associated anomalies has been reported by others. 1 3–6 13 14 16–22 Although most other major congenital anomalies are reported with a percentage of isolated cases up to 90%, cases with hydrocephalus and omphalocele also make up this high proportion of associated anomalies as for oesophageal atresia. 29 30 32 33 It is important to evaluate the fetus for associated anomalies as these can be of prognostic and therapeutic importance for the baby at birth or later in infancy.

In the present report a tracheo-oesophageal fistula was found in 72.2% of cases, 69.0% of cases with isolated oesophageal atresia and 75.4% of cases with non-isolated oesophageal atresia. Previous literature, mainly based on surgical data indicates that up to 90% of cases have a fistula. 6 10 14 17 34–36

In the present study the knowledge of a tracheo-oesophageal fistula is based on the WHO ICD9 and 10 code given by the local registry. All cases with tracheo-oesophageal fistula may not be reported to us using the correct code. However, we used data from all infants and fetuses and not only those that reach the surgeon. In our data we have a slightly lower percentage for tracheo-oesophageal fistula among fetal deaths (68.5%) compared with 71.5% of live births. Our data suggest that the percentage of oesophageal atresia cases with tracheo-oesophageal fistula in the total population of cases with oesophageal atresia is lower than among those surviving until surgery.

During the 20 year study period the prenatal detection rate increased significantly. There was no difference in mortality in the group of cases diagnosed with isolated oesophageal atresia pre or postnatally over time as mortality was low in both groups. In 2004 one or more ultrasound investigations were offered to all pregnant women in all registries included in this study except for Malta and The Netherlands. All countries offering ultrasound screening had a scan performed in the second trimester of pregnancy. 37

We found that one third of live born infants with isolated oesophageal atresia were born preterm (gestational age <37 weeks) and if associated anomalies were present, the proportion was even higher. The reported rate of preterm births in the European population ranged from 5.5% to 7.2%. 38 39 The finding of such a high proportion of premature births is probably related to the hydramnion associated with oesophageal atresia.

In 7.8% of all cases termination of pregnancy was performed with the majority of terminations performed for cases with associated anomalies. The terminations may have been due to the severity of the associated anomalies. Some of these associated anomalies such as Edward’s syndrome, CHARGE syndrome have a high mortality in the neonatal period. Therefore, comparison of mortality for oesophageal atresia by region may be problematic as the number of termination of pregnancies and the number of live births with associated anomalies may differ between regions and countries depending on laws and policies and prenatal screening programmes. 37

More than 90% of live births with isolated oesophageal atresia were alive at 1 week of age. The survival rate for live births with associated anomalies was lower. Long-term mortality is reported to be low, 40 but morbidity in childhood is high due to poor growth early in life, recurrent airway infections, chronic lung disease, as well as oesophageal strictures, gastro-oesophageal reflux, swallowing difficulties, and musculoskeletal problems due to either associated anomalies or as a complication to thoracotomy. 41–45

Primary prevention of oesophageal atresia is currently not possible as the aetiology is still unknown. A better understanding of the epidemiology and genetics and a higher prenatal detection rate might contribute to better outcomes as parents and care providers would be better prepared to manage a child with this anomaly.

CONCLUSIONS

In this study the overall European prevalence of oesophageal atresia was 2.43 per 10 000 births and did not change over time. Large regional differences in the prevalence of oesophageal atresia and in the prenatal detection rate of oesophageal atresia were observed. Prenatal detection rates increased over time. For newborns with isolated oesophageal atresia 1-week survival was excellent although a considerable proportion of these infants were born preterm. Oesophageal atresia is often associated with other major anomalies, congenital heart defects being the most frequent (30% of cases of oesophageal atresia).

The frequency of termination of pregnancy is rather low taking the large number of associated anomalies into consideration. The study enhances the epidemiological information available for oesophageal atresia.

EUROCAT Working Group members

Martin Haeseler, Medical University of Graz, Austria; Vera Nelen, Director Provincial Institute for Hygiene, Antwerp, Belgium; Ingeborg Barisic, Department of Pediatrics, Referral Centre of the Ministry of Health for Surveillance of Congenital Anomalies in the Republic of Croatia, Children’s University Hospital Zagreb, Clinical Hospital Center Sisters of Mercy, Zagreb, Croatia; Anke Rissmann, Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty Otto-von-Guericke University Magdeburg, Germany; Mary O’Mahony, Health Service Executive, Cork, Ireland; Bob McDonnell, Health Service Executive, Dublin, Ireland; Carmel Mullaney, Bob McDonnell, Health Service Executive, Cork, Ireland; Mary O’Mahony, Health Service Executive, Cork, Ireland; Anke Rissmann, Malformation Monitoring Centre Saxony-Anhalt, Medical Faculty Otto-von-Guericke University Magdeburg, Germany; Mary O’Mahony, Health Service Executive, Cork, Ireland; Bob McDonnell, Health Service Executive, Dublin, Ireland; Carmel Mullaney,
Competing interests

Funding

This work was supported by grants from Dagmar Marshall Foundation, AJ Andersen and Wife’s Foundation, Region of Southern Denmark, University of Southern Denmark and Odense University Hospital. EUROCAT is funded by Health Sciences, University of Leicester, Leicester, UK; Patricia Boyd, Congenital Disabilities, University of Southern Denmark; Roderick Murdoch, Australia; Harry G. Chittmittrapap, OMNI-Net for Children, Rivne, Ukraine; Elizabeth Draper, Dept of Health Sciences, University of Leicester, Leicester, UK; Patricia Boyd, Congenital Anomaly Registry for Oxfordshire, Berkshire and Buckinghamshire, National Perinatal Epidemiology Unit, University of Oxford, UK; Judith Rankin, Institute of Health & Society, Newcastle University, England, UK; David Tucker, Public Health Wales, Wales, UK; Diana Wellesley, University Hospitals Southampton, Faculty of Medicine and Wessex Clinical Genetics Service, UK.

Provenance and peer review

Not commissioned; externally peer reviewed.

REFERENCES

Oesophageal atresia: prevalence, prenatal diagnosis and associated anomalies in 23 European regions

Rikke Neess Pedersen, Elisa Calzolari, Steffen Husby, et al.

Arch Dis Child 2012 97: 227-232 originally published online January 13, 2012
doi: 10.1136/archdischild-2011-300597

Updated information and services can be found at:
http://adc.bmj.com/content/97/3/227.full.html

These include:

References
This article cites 42 articles, 8 of which can be accessed free at:
http://adc.bmj.com/content/97/3/227.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Oesophagus (51 articles)
- Pregnancy (200 articles)
- Reproductive medicine (435 articles)
- Epidemiologic studies (814 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/