HIGH TEMPERATURE CORROSION OF METALS
IN PURE SO₂

C. De Asmundis, F. Gesmundo and
C. Bottino

Istituto di Chimica Fisica Applicata
dei Materiali del C.N.R.,
Lungobisagno Istria 34, 16141 Genova,
Italy

The study of corrosion of metals in
SO₂ has a great technical importance
both for the simultaneous presence of O
and S in many industrial processes and
for the increase of the corrosion rate
in these atmospheres in comparison with
the corrosion in O₂.

In this work the relevant results in
the study of the corrosion of various
metals (Cr, Mn, Fe, Co, Ni, I) in 1 atm SO₂
at 600–1000°C are reported; the weight-
change of the samples was followed by a
quartz-spring thermobalance, whereas the resultant corrosion layers were analyzed
by means of X-ray diffraction, optical
and electron scanning microscopes, and
X-ray microanalysis.

The results show that this reaction
leads to the production of a mixture of
oxides and sulfides, with the exception of
Cr for which only a small concentra-
tion of sulfur dissolved in the oxides
has been observed. The sulfides tend to
concentrate in the inner region of the
scale, even if in some cases they extend
up to the outer scale surface. In some
cases (Co, Ni) the formation of sulfides
takes place mainly at the scale surface
even after some hours of reaction while
for others (Mn, Fe) it occurs at this
site only during the initial stages of
the reaction but inside the scale at
longer reaction time. In the corrosion
of Ni and Co a continuous layer of sul-
fide free from oxide is formed directly
and contact with the metal, presumably
corresponding sulfide. At sufficiently
high temperatures (above 637°C for Ni
and 875°C for Co) the sulfide is molten
and shows a tendency to attack preferen-
tially the metal along the grain bound-
daries. However, the nature and distrib-
ution of the phases present in the
scale depend on the gas pressure, as well
as on the condition of thermodynamic
stability of the different phases, and
on the relative rate of the different
possible reactions in the various sys-
tems.

At last the kinetics of the reaction
are usually irregular and only in spec-
ial cases approximate to a parabolic-type
rate late. The reaction rate is much
higher than that measured in pure oxy-
gen at the same temperature for Fe, Co
and Ni, while for Cr and Mn it does not
differ appreciably.

IMPACT TOUGHNESS OF AISI 4340 STEEL
VERSUS NON-METALLIC INCLUSION
DISTRIBUTION

P. Crosta*, F. Porro, E. Scaiola and
V. Wagner**

G. Agusta S.p.A., Via Schiapparelli
8, 21013 Gallarate (Varese) Italy;
*Università di Milano, Istituto di
Scienze Fisiche; **LTS-Costr.
Aeronautiche

Studying mechanical properties of
AISI 4340 ESR premium quality steel,
efforts have been made to find a signi-
ificant parameter between the impact
energy of Charpy-V specimens and the
distribution of non-metallic inclusions
of fracture surfaces.

Transverse Charpy-V specimens show
arrays of very long inclusions parallel
to the notch, due to the reduction of
the ingot by rolling procedure.
The MnS inclusions are the main in-
clusion contents and, just due to their
elongated shape, they seem to be the
most critical for the propagation of
the fracture, especially for the heat
treatment in the region of ductile frac-
ture by microvoid coalescence.

The most sensitive parameter connect-
ed with impact energy has been found to
be the linear distance between MnS in-
clusion on transverse Charpy-V specimens
from bars with a gradient of very low
sulphur content, both for ductile and
brittle fracture.

To achieve good statistical distribu-
tion, results have been obtained analyz-
ing the SEM on-line images at a proper
magnification.

Impact toughness in transverse di-
rection has been expressed as a linear
function of the mean distance of elonga-
ted inclusions on the fracture surface.
The above mentioned linear relation-
ship has been checked for two different
heat treatments.

Furthermore, the fracture profiles
have been evaluated in order to better
correlate the distance among inclusions
and MnS volume fraction in both condi-
tions of heat treatment.