
A Customizable Approach for the
Automated Quality Assessment of Modelling Artefacts

Francesco Basciani⇤, Juri Di Rocco⇤, Davide Di Ruscio⇤, Ludovico Iovino† and Alfonso Pierantonio⇤
⇤ DISIM - University of L’Aquila

Via Vetoio snc, I–67100, L’Aquila, Italy
Email: name.surname@univaq.it
† Gran Sasso Science Institute

Via F. Crispi 7, I–67100, L’Aquila, Italy
Email: name.surname@gssi.infn.it

Abstract—In Model-Driven Engineering (MDE) giving a precise defini-
tion of quality models, identifying which quality attributes are of interest
for specific stakeholders, and how relating and aggregating together
quality attributes are still open issues. The main limitations of currently
available quality approaches are limited extensibility, artifact specificity,
and manual assessment. This paper proposes an approach supporting the
definition of custom quality models consisting of hierarchically organized
quality attributes whose evaluation depends on metrics specifically
conceived and applied on the modeling artifacts to be analysed. A
domain specific language is proposed to specify how quality attributes
and metrics have to be aggregated. An execution environment is also
provided to apply the defined quality models on actual modeling artifacts
so to enable their automated quality assessment. Real applications of the
approach are presented by defining and applying explanatory quality
models suitably conceived to assess the quality of metamodels and
transformations retrieved from public repositories.

I. INTRODUCTION

Software Quality Engineering [14] is a discipline that is concerned
with improving the approach to software quality. What exactly
constitutes the quality of software is often subject to debate due
to the several perspectives throughout the software lifecycle. In this
context, placing reliance on software quality models is well-accepted
in order to support quality management of software systems [20].
A common approach to formulate a software quality model is to
first identify a small set of high-level quality attributes and then
decompose them into sets of subordinate attributes. Over the years,
researchers have proposed new models (e.g., [4, 7, 11, 12, 18]) to
emphasize the need for an appropriate support to perform quality
checks while developing software systems. Despite successes and
standardisation efforts, none of the proposed models seems to have
reached a significant acceptance. To some extent, this is due to the
different meanings they can be given to depending on the considered
application scenarios and intended purpose [5, 11].

The need for approaches and tools supporting quality assessment
also in Model-Driven Engineering [22] (MDE) is witnessed by the
increasing interest around the topic and by a large corpus of research
that has been produced over the last few years (e.g., see [3, 16, 17]).
MDE offers a promising approach to alleviate the software complex-
ity by shifting the focus from coding to modeling. Most of the existing
approaches supporting quality assessment in MDE identify a number
of artefact-specific metrics (e.g., for metamodels, class diagrams,
and model transformations) and discuss how they characterize the
analysed artefacts in terms of modularity, completeness, and correct-
ness. Even though some of the approaches are tool supported, few of

This research was supported by the EU through the Model-Based Social
Learning for Public Administrations (Learn Pad) FP7 project (619583)

them permit to automatically assess quality, and the provided quality
models cannot be extended or customized to better accommodate
specific requirements. In particular, as discussed later in the paper,
the limitations affecting currently available techniques are related to
their limited extensibility, artifact specificity, and manual assessment.

In this paper, we present an extensible and generic approach for
the quality assessment of modeling artifacts. The approach consists
of a tool chain supporting the specification of custom quality models
(which best fit particular business contexts) and the automated quality
assessment of any kind of modeling artifact. The specification of
quality models and the way quality attributes defined therein have
to be hierarchically aggregated and thus evaluated is performed by
means of a proposed domain specific language (making use of OCL1).

Outline. The paper is structured as follows. Section II introduces
the problem of assessing the quality in model-driven engineering
and gives an overview of the related work. The proposed quality
assessment approach is presented Section III. Concrete applications
of it on real metamodels and transformations are given in Section IV.
Section V concludes the paper and outlines some future plans.

II. QUALITY ASSESSMENT IN MODEL-DRIVEN ENGINEERING

Over the last decade, several approaches have been proposed to
support the quality measurement of modeling artifacts. In [3] authors
introduce a quality model specifically conceived to measure the
quality of metamodels: characteristics like maintainability, porta-
bility, and usability are introduced together with sub-characteristics
like analyzability, adaptability, and understandability for each main
characteristic.

The mmSpec language is proposed in [16] to specify and check
metamodel properties. A library of 30 properties has been proposed
by organizing them in four categories namely design, best practices,
naming conventions, and metrics. Example of metamodel character-
istics that can be expressed by means of mmSpec are:

1) there are no composition cycles (from the design category);
2) there are no uninstantiable classes, i.e., abstract classes without

children (from the best practices category);
3) element names are too complex to process, i.e., too long (from

the naming conventions category);
4) no class is overloaded with attributes, 10-max by default (from

the metrics category).
In [17] quality model specifically conceived for metamodels is

proposed. Starting from the formulation in [3], each quality attribute
is aligned with a combination of metrics supposed to measure

1OMG Object Constraint Language: http://www.omg.org/spec/OCL/c�IEEE - QUATIC 2016

IEEE Copyright Notice. Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino and Alfonso Pierantonio. “A Customizable Approach for the Automated Quality Assessment of Modelling Artefact“.
Quatic 2016 Conference. IEEE, 2016. Accepted paper, to be published.

it. Examples of considered quality attributes are reusability, under-
stability, functionality, and extendibility. Their measurement is based
on proposed formulas involving typical object-oriented measures like
coupling, size, and inheritance.

An empirical study has been conducted in [10] with the aim of
understanding the perception of quality that modelers have about
specific metamodels. The study has involved 10 metamodel char-
acteristics like modularity, completeness, understandability, consis-
tency, and correctness. Correlations among them have been identified
suggesting that the perceived quality “was mainly driven by the
metamodel completeness, correctness and modularity while other
quality attributes could be neglected” [10].

Quality characteristics of model transformations have been also
investigated. In particular, in [21] a systematic evaluation framework
for comparing model transformation approaches is provided. The
framework relies on the quality characteristics of the ISO/IEC 9126-1
standard [12]. For each quality attribute an alignment with metrics
and evaluation criteria is introduced. In [23] a catalogue of design
patterns for developing model transformations is given. The proposed
catalogue has been evaluated with respect to quality characteristics
like correctness, efficiency, reliability, and maintainability. Such
properties are formally encoded to support their automated evaluation
by means of model checking techniques. Other works focus on
metrics specifically conceived to measure structural characteristics
of metamodels, models, and model transformations (see [15], [1],
[26], respectively). In [15] a number of metrics are introduced to
calculate the ratio between the number of metaclasses in a given
metamodel and the number of concepts that are explicitly available
in the concrete syntax of the corresponding modeling language. EMF
Metrics [1] is a tool supporting the specification and calculation of
metrics for models developed atop of the Eclipse Modeling Platform
(EMF). Number of attributes, classes, and associations are examples
of metrics defined by means of EMF Metrics and discussed in [1]. A
set of metrics for measuring ATL [13] model transformations is given
in [1] without giving any categorization of them. Number of matched
rules, helpers, and bindings are examples of metrics discussed in [26].

Despite the large corpus of research outlined above testifies the in-
creasing interest on the topic of quality in MDE, existing approaches
suffer all or some of the following shortcomings:
B limited extensibility: depending on the application domain and user
needs, the required quality characteristics supporting the evaluation
of a given modeling artifact might change. Consequently, a quality
assessment approach should be open to custom quality models that
users can easily define to support the quality assessment problem
at hand. For instance, the approach presented in [16] goes in that
direction, even though mmSpec permits to specify only structural
metamodel characteristics without providing the means to hierarchi-
cally organize them as required when defining quality models;
B artifact specificity: all the approaches previously presented have
been defined to support the quality assessment of specific artifacts i.e.,
metamodels, models, or transformations. Thus, users that would like
to measure all the modeling artifacts involved in a given model-based
process should adopt different approaches and tools. For instance,
modelers that have developed metamodels and transformations and
would like to assess their quality should adopt at least two different
approaches like [17, 21];
B manual assessment: some of the work outlined above introduces
quality characteristics without providing the tools for automatically
measuring the introduced quality attributes as e.g., in the case of [3].

In our opinion, a quality assessment approach should overcome all
the limitations previously discussed as presented in the next section.

III. THE PROPOSED QUALITY ASSESSMENT APPROACH

To overcome the limitations previously discussed, the quality
assessment approach shown in Fig. 1 is proposed. It relies on a quality
metamodel enabling the specification of quality models consisting of
hierarchically organized quality characteristics. Each quality attribute
consists of an expression defining how the values of the sub-attributes
have to be aggregated. The leafs of the quality model consist of
metrics whose values are calculated by dedicated metrics providers.
By resembling concepts from the “models at run-time” research
area [19], the evaluation engine is able to apply quality models on
source artifacts by executing all the aggregating expressions defined
for each quality characteristic. To perform the specified measurements
the approach has been implemented atop of the MDEForge platform
[2] providing the means to store and retrieve modeling artifacts
further than mechanisms to specify and execute metrics [6].

It is important to remark that the proposed approach is mainly
intended for modelers and developers that have the availability of
reusable modeling artifacts and that want to make an evidence-
based decision on which one should be selected for the task at
hand. Moreover, the approach is artifact independent in the sense
that it can be applied to assess the quality of any kind of modeling
artifacts. We are not aiming at proposing ”yet another quality model”,
but an holistic approach providing users with the means to define
and customize their own quality idea. Depending on the application
domain and needs, users will be able to define its own quality model
and even extend the set of available metric providers that are required
to measure specific quality attributes, which are considered relevant
by users.

The main building blocks of the approach shown in Fig. 2 (i.e.,
the quality metamodel and the evaluation engine) are described in
the next sections.

A. The Quality Metamodel

It plays a key role in the proposed approach since it enables
the specification of quality models according to user requirements.
The metamodel is shown in Fig. 2 and consists of a number of
constructs as explained in the following. QualityModel is the root
element consisting of QualityAttributes, ValueTypes, and
MetricProviders.

A QualityAttribute represents a quality aspect that is con-
sidered to be relevant for contributing to the quality assessment of
a given artifact. A quality attribute, like maintainability can be an
aggregation of other attributes, like changeability and modularity.
Thus, each quality attribute specifies how to aggregate the contained

Quality Model
Specification Quality

Model
Quality

Metamodel

Evaluated
Quality Model

1

Metric
Provider

Artifact
Artifact

Metamodel

Automated Quality
Assessment

conforms to is input of producesLegend

External Entity Process Data Store

Fig. 1. The proposed quality assessment approach

Fig. 2. The Quality Metamodel

attributes in order to provide an overall quality value for the consid-
ered attribute as described below.

Each quality attribute has a Value representing its calcu-
lated value. Value is abstract and it can be SingleValue or
AggregatedValue. SingleValue represents the value obtained
by the application of a given MetricProvider, which refers to the
software component able to calculate a specific metrics. The attribute
id of a given MetricProvider is used to identify and retrieve
the actual software component implementing the considered metric.
AggregatedValue indicates a composition of different values. An
aggregation is specified by means of an OCL expression contained
in the attribute body of the Operation element.

Each Value has a reference with a ValueType element, which
defines its type. ValueType is abstract and several specializations
are provided in order to enable the specifications of categories (like
low, medium, high), ranged values (e.g., from 0 to 5), textual, boolean,
integer, and real values. Additionally, AggregatedValueMetric
permits to specify aggregated values for a given metric like average,
median, and standard deviation.

B. The Evaluation Engine

Given a source artifact to be measured (e.g., a model transformation
or a metamodel) and an input quality model, the evaluation engine
executes all the metrics and expressions therein by producing at the
end of the process the evaluated quality model. A fragment of the
Java implementation of the evaluation engine is shown in Listing 1. It
relies on the Eclipse Modeling Framework (EMF) and the method
actualize at line 3 performs the actualization of a previously
retrieved quality model on a given artifact. For each quality attribute
the corresponding value is calculated. In case of single values the
corresponding metric providers are executed and the calculated values
are stored (see lines 6-15). In case of aggregated values (see lines
17-21), the corresponding OCL expressions are evaluated by means
of the method evaluateOCL shown at lines 26-32.

The method compute in the sample Main class at line 37
retrieves the quality model qm, and actualizes it on the model
transformation UML22Measure.atl. The evaluated quality model
is serialized in the file evaluatedQM.xmi.

Listing 1. Fragment of the Evaluation Engine
1class EvaluationEngine {
2 ...
3 private QualityModel actualize(QualityModel qm, String

artifactName) throws Exception {
4 ...
5 for (Value value : qm.getQualityValues()) {
6 if(value instanceof SingleValue) {
7 SingleValue sv = (SingleValue) value;

8 MetricProvider mp = sv.getMeasuredBy();
9 Metric metric = artifactService.

getArtifactMetricByArtifactAndMetricNames(
artifactName, mp.name));

10 if(sv.getTypes() instanceof IntegerValueType) {
11 IntegerValueType vt = (IntegerValueType)sv.getTypes();
12 vt.setValue(((IntegerMetric)metric).getValue());
13 }
14 ...
15 }
16 ...
17 if(value instanceof AggregatedValue) {
18 AggregatedValue av = (AggregatedValue) value;
19 OCLExpression body = av.getCalculatedBy().getBody();
20 av.setTypes(evaluateOCL(qm,body));
21 }
22 }
23 ...
24 return qm;
25 }
26 public static Value evaluateOCL(QualityModel qm,

OCLExpression oclExpr) throws ParserException {
27 OCL ocl = OCL.newInstance(EcoreEnvironmentFactory.

INSTANCE);
28 ...
29 Query<EClassifier, EClass, EObject> query = ocl.

createQuery(oclExpr);
30 Value result = (Value) query.evaluate(qm);
31 return result;
32 }
33}
34...
35class Main {
36...
37 public void compute(String qmPath){
38 QualityModel qm = getQualityModel(qmPath);
39 QualityModel evaluatedQM = actualize(qm, "UML22Measure.

atl");
40 serialize(evaluatedQM, "evaluatedQM.xmi");
41 }
42}

Next section presents real applications of the proposed approach
to assess the quality of actual model transformations and metamodels
stored in the MDEForge repository [2].

IV. AUTOMATED QUALITY ASSESSMENT OF METAMODELS AND
MODEL TRANSFORMATIONS

In this section we present the application of the proposed approach
to assess the quality of metamodels and transformations by consid-
ering selected quality characteristics among those presented in [24]
and [26], respectively. The selection has been done to enable the
specification of explanatory quality attributes permitting to highlight
the strengths of the approach. By using the metamodel shown in Fig.
2, we have defined a quality model to measure the quality of model
transformations and we have applied it on ⇡110 transformations
stored in the MDEForge repository (see Section IV-A). Another
quality model has been defined to measure the quality of metamodels

Fig. 3. Sample Quality Model for ATL Model Transformations

and we have applied it on ⇡500 metamodels stored in the same
repository (see Section IV-B). The obtained data are discussed in
the following and interested readers can refer to the complete data
available online2.

A. Quality Assessment of Model Transformations

In [26] the author defines a set of metrics specifically defined for
measuring structural characteristics of ATL model transformations
[13]. Examples of metrics discussed in [26] are the following:

– TR: number of transformation rules;
– MR: number of matched rules (excluding lazy matched rules);
– Bind: number of bindings;
– RT: number of resolveTemp() calls;
– ATR: number of abstract transformation rules;
– HR: number of rule hierarchies;
– HHR

Max

: maximum height of rule hierarchies;
– WHR

Max

: maximum width of rule hierarchies.

ATL is a rule based language with mixture of declarative and
imperative constructs. An interesting characteristic that can be con-
sidered when assessing the quality of ATL transformations is their
declarativeness, which can contribute to assess their understability.
By considering the metrics above and by borrowing the definition of
declarativeness given in [25] the following quality attribute can be
defined:

Declarativeness =

8
><

>:

Low if MR

TR

+ RT

Bind

< 0.3

Medium if 0.3 =< MR

TR

+ RT

Bind

< 0.7

High if MR

TR

+ RT

Bind

>= 0.7

(1)

According to such a definition, ATL model transformations can be
of low, medium, and high declarativeness by referring to imperative,
hybrid, and declarative transformations, respectively. To assess the
declarativeness of ATL model transformations the metrics MR, RT,
TR, and Bind have been used and the thresholds 0.3 and 0.7 have been
considered. It is important to remark that such thresholds are only
explanatory and we are not arguing about their correctness, which
should be empirically validated. Such a validation activity is beyond
the scope of this paper. By relying on the same metrics, and by
borrowing concepts from [26], the Reuse attribute can be also defined
as follows with the aim of characterizing to what extent a given ATL
transformation reuses already existing rules.

2http://bit.ly/1NsbEds

reuseV alue = (
ATR+HR+HHR

Max

+WHR
Max

TR
)⇥

1

4

Reusability =

8
><

>:

Low if reuseValue < 0.2

Medium if 0.2 =< reuseVale < 0.3

High if reuseValue >= 0.3

(2)

In [9], authors define maintainability as “the ease with which a
software system or component can be modified to correct faults,
improve performance, or other attributes, or adapt to a changed
environment”. Accordingly, the attributes Reuse and Declarativeness
can be combined to define the Maintainability quality of model
transformations as follows:

Maintainability =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

High if (Declarativeness = High
and Reuse = High) or
(Declarativeness = High
and Reuse = Medium)

Medium if (Declarativeness = High
and Reuse = Low) or
(Declarativeness = Hybrid
and Reuse = High) or
(Declarativeness = Hybrid
and Reuse = Medium)

Low otherwise

(3)

The quality attributes previously presented can be defined by means
of the textual domain specific language, which has been conceived
to support the specification of quality models conforming to the
metamodel shown in Fig. 2. In particular, Fig. 3 shows a sample
quality model defined by means of the conceived textual language and
containing the specifications of the quality attributes Declarativeness,
Reuse and Maintainability previously presented. Because of lack of
space only a fragment of the whole quality model is shown. The right-
hand side of Fig. 3 shows the outline of the quality model textually
defined on the left-hand side of the same figure.

The model starts with the definition of the quality model element
MyATLQualityModel and the declaration of the used metric providers
like the one at lines 2-6 in Fig. 3. After the metric provider
declarations, the model contains the specification of all the value
types used in the model, like the enumeration specifically introduced
at lines 10-13 to define different kinds of maintainability of an ATL
model transformation, which can be low, medium or high. From lines
21 to 31 the actual definition of the maintainability quality attribute is
defined as the aggregated value of the other declared quality attributes
Reuse and Declarativeness. The definition of the expression to be
evaluated for measuring the value of the maintainability attribute
is specified at lines 36-43. In particular, the keyword calculatedBy
defines the OCL expression as shown at lines 39-43 in Listing 2.

Listing 2. OCL expressions specifying the aggregation of quality attributes
defining the Maintainability quality attribute

1let Maintainability =
2if (DECLARATIVENESS_QA.value.type.value =

Declarativeness_QT.High and

3 (REUSE_QA.value.type.value = Reuse_QT.High))
4 then Maintenability_QT.High
5 else if (DECLARATIVENESS_QA.value.type.value =

Declarativeness_QT.High and

6 REUSE_QA.value.type.value = Reuse_QT.Medium)
7 then Maintenability_QT.High
8 else if(DECLARATIVENESS_QA.value.type.value =

Declarativeness_QT.High and

9 REUSE_QA.value.type.value = Reuse_QT.Low)
10 then Maintenability_QT.Medium

11 else if (DECLARATIVENESS_QA.value.type.value =
Declarativeness_QT.Medium and

12 REUSE_QA.value.type.value = Reuse_QT.High)
13 then Maintenability_QT.Medium
14 else if (DECLARATIVENESS_QA.value.type.value =

Declarativeness_QT.Medium and

15 REUSE_QA.value.type.value = Reuse_QT.Medium)
16 then Maintenability_QT.Medium
17 else Maintenability_QT. Low
18 endif

19 endif

20 endif

21 endif

22endif
23...
24let Reuse =
25if (((ATR_QV.type.value + HHR_Max_QV.type.value +
26 WHR_Max_QV.type.value)/4) < 0.2)
27then Reuse_QT.Low
28else if (((ATR_QV.type.value + HHR_Max_QV.type.value +
29 WHR_Max_QV.type.value)/4)<0.3)
30 then Reuse_QT.Medium
31 else Reuse_QT.High
32 endif

33endif
34...
35let declarativeness =
36if ((MR_QV.type.value/TR_QV.type.value +
37 RT_QV.type.value + Bind_QV.type.value)<0.3)
38 then Declarativeness_QT.Imperative
39 else if ((MR_QV.type.value / TR_QV.type.value +
40 RT_QV.type.value + Bind_QV.type.value)<0.7)
41 then Declarativeness_QT.Hybrid
42 else Declarativeness_QT.Declarative
43 endif

44endif

TABLE I
SAMPLE OF THE ANALYSED MODEL TRANSFORMATIONS

ATL Transformation Declarativeness Reuse Maintainability
Uml22Measure Low Low Low
Table2TabularHTML Low Medium Low
KM32Measure Low Low Low
MMD2ATL Medium Low Low
WSDL2R2ML Medium Medium Medium
Petrinet 2 PNML Medium Medium Medium
StateMachine2calculusSystem High Medium High
HTML2XML High Medium High
Families2Persons High High High
AnyLogic2XML High Medium High
MM0Transf High High High
TextualPathExp2PathExp High Medium High

The quality model shown in Fig. 3 has been applied on a corpus
consisting of ⇡100 ATL transformations retrieved from the MDE-
Forge repository, and a sample of the obtained results is shown in
Table I. According to table, TextualPathExp2PathExp3 is the most
maintainable transformation in the analysed corpus. On the contrary,
UML22Measure4 resulted to be the less maintainable. In fact, it
consists of 9 rules in total, and only 1 is a matched one. Moreover,
according to the collected data the transformation has a low reuse
degree and for this has been classified as difficult to maintain.

B. Quality Assessment of Metamodels
In this section we show the application of the proposed approach

to assess the quality of metamodels. To this end we borrowed the
definition of the maintainability attribute given in [8] and defined for
class diagrams in terms of the following metrics:

– NC: number of classes;

3https://www.eclipse.org/atl/atlTransformations/PathExp2PetriNet/
ExamplePathExp2PetriNet[v00.01].pdf

4http://www.eclipse.org/atl/atlTransformations/UML22Measure/
ExampleUML22Measure[v00.02].pdf

Fig. 4. Sample Quality Model for Metamodels

– NA: number of attributes;
– NR: number of references;
– DIT

Max

: it is the maximum between the DIT value obtained
for each class of the metamodel. The DIT value for a class
within a generalization hierarchy is the longest path from the
class to the root of the hierarchy;

– HAgg
Max

: it is the maximum between the HAgg value obtained
for each class of the metamodel. The HAgg value for a class
within an relation chain is the longest path from the class to
others.

By relying on such metrics, the maintainability quality attribute
can be defined as follows:

maint = (
NC +NA+NR+DIT

Max

+HAgg
Max

5
)

Maintainability =

8
><

>:

Easy if maint < 0.1

Medium if 0.1 =< maint < 0.2

Difficult if maint >= 0.2

(4)

It is important to remark that the values of all the considered
metrics have to be normalized in order to have the value of maint in
the range [0..1].

Figure 4 shows a fragment of the quality model defined for
metamodels and containing the specification of the maintainability
attribute as given in equation 4. The model consists of the definition
of all the required metric providers (as listed at lines 3-8), the quality
types (see lines 9-17), and the actual definition of the maintainability
attribute at lines 18-21. The OCL expression implementing the
definition given in equation 4 is defined in the calculatedBy element
(see lines 27-31) and shown Listing 3.

Listing 3. OCL expressions defining the Maintenability attribute for meta-
models

1let x : Real =
2NC_QV.type.value + NA_QV.type.value + NR_QV.type.value +
3DITMax_QV.type.value + HAggMax_QV.type.value)/5
4in
5if(x<0.2) then

6 MaintainabilityQT.Easy
7else if (x<0.3) then

8 MaintainabilityQT.Medium
9 else

10 MaintainabilityQT.Difficult
11 endif

12endif
13...

TABLE II
SAMPLE OF THE ANALYZED METAMODELS

Metamodel Maintainability
javaforms Easy
jtemplates Easy
reusejava Easy
csv Easy
MKMCore Easy
CPR Easy
MavenProject Medium
SiteConf Medium
DiagramInterchange Medium
CADM Medium
BusinessDomainDsl Medium
ConnectorGenerator Medium
droid Difficult
J2SE5 Difficult
Wordprocessing-MLStyles Difficult
MiningMart Difficult
ocl Difficult
OntoUML Difficult

We applied the quality model shown in Fig. 4 on a corpus of about
⇡500 metamodels retrieved from the MDEForge repository and a
sample of the obtained results is shown in Table II. Interestingly,
the OntoUML metamodel resulted the worst metamodel to maintain
and javaforms the best one. OntoUML is a metamodel consisting
of a large number of metaclasses, it has about 30 references and 30
attributes, and it is characterized by a high number of generalizations.
Javaform is a very simple metamodel, with just one metaclass and
one reference. This implies that the MaxDIT and MaxHAGG are one
too. The metamodel imports another metamodel, but being so simple
makes it easy to maintain.

V. CONCLUSIONS AND FUTURE WORK

The paper presented an extensible and generic approach to assess
the quality of modelling artefacts. We proposed a tool chain enabling
users to specify custom quality models, and to apply them on
the artefacts being analysed in order to automatically assess their
quality. We have shown the application of the proposed approach on
real metamodels and ATL transformations publicly available. Thus
the proposed approach permits to overcome the issues of limited
extensibility, artifact specificity, and manual assessment affecting
currently available techniques. In the future we plan to apply the
approach on other artefacts e.g., editors, code generators and consider
also other metrics and quality attributes, like the ones proposed in [6].
Moreover, we plan to embed the proposed approach as a new service
of the MDEForge platform in order to permit the users of the system
to remotely apply the quality assessment approach on the artefacts
she is locally developing.

REFERENCES

[1] T. Arendt, P. Stepien, and G. Taentzer, “EMF metrics: Spec-
ification and calculation of model metrics within the eclipse
modeling framework,” BENEVOL, 2010.

[2] F. Basciani, J. Di Rocco, D. Di Ruscio, A. Di Salle, L. Iovino,
and A. Pierantonio, “MDEForge: an Extensible Web-Based
Modeling Platform.” CloudMDE@MoDELS, pp. 66–75, 2014.

[3] F. Bertoa Manuel and V. Antonio, “Quality attributes for soft-
ware metamodels,” in QAAOSE@TOOLS, 2010.

[4] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative
evaluation of software quality,” in ICSE, 1976, pp. 592–605.

[5] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner,
“Software quality models: Purposes, usage scenarios and re-
quirements,” in ICSE Workshop on Soft. Quality, 2009, pp. 9–
14.

[6] J. Di Rocco, D. Di Ruscio, L. Iovino, and A. Pierantonio,
“Mining metrics for understanding metamodel characteristics,”
in MiSE, 2014, pp. 55–60.

[7] R. G. Dromey, “A model for software product quality,” IEEE
Trans. on Soft. Engineering, vol. 21, no. 2, pp. 146–162, 1995.

[8] M. Genero and M. Piattini, “Empirical validation of measures
for class diagram structural complexity through controlled ex-
periments,” in QAOOSE@ECOOP, 2001.

[9] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wil-
son, J. Radatz, M. Yee, H. Porteous, and F. Springsteel, IEEE
standard computer dictionary: Compilation of IEEE standard
computer glossaries. IEEE Press, 1991.

[10] G. Hinkel, M. Kramer, E. Burger, M. Strittmatter, and L. Happe,
“An Empirical Study on the Perception of Metamodel Quality,”
in MODELSWARD, 2016.

[11] R. W. Hoyer, B. B. Hoyer, P. B. Crosby, W. E. Deming et al.,
“What is quality?” Quality Progress, vol. 34, no. 7, p. 52, 2001.

[12] ISO, “ISO/IEC 9126-1:2001, Software engineering – Product
quality – Part 1: Quality model,” International Organization for
Standardization, Tech. Rep., 2001.

[13] F. Jouault, F. Allilaire, J. Bzivin, and I. Kurtev, “Atl: A
model transformation tool,” Science of Computer Programming,
vol. 72, no. 12, pp. 31 – 39, 2008.

[14] S. H. Kan, Metrics and Models in Software Quality Engineering,
2nd ed. Addison-Wesley Longman Publishing Co., Inc., 2002.

[15] H. Kargl, M. Strommer, and M. Wimmer, “Measuring the
explicitness of modeling concepts in metamodels,” in Workshop
on Model Size Metrics at MoDELS/UML, 2006.

[16] J. J. López-Fernández, E. Guerra, and J. de Lara, “Assessing
the Quality of Meta-models.” MoDeVVa@MoDELS, pp. 3–12,
2014.

[17] Z. Ma, X. He, and C. Liu, “Assessing the quality of metamod-
els.” Frontiers of Computer Science, vol. 7, no. 4, pp. 558–570,
2013.

[18] J. McCall, Factors in Software Quality: Preliminary Handbook
on Software Quality for an Acquisiton Manager. General
Electric, 1977.

[19] S. J. Mellor and M. Balcer, Executable UML: A Foundation
for Model-Driven Architectures. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[20] M. Ortega, M. Pŕez, and T. Rojas, “Construction of a systemic
quality model for evaluating a software product,” Soft. Quality
Journal, vol. 11, no. 3, pp. 219–242, 2003.

[21] S. K. Rahimi, K. Lano, S. Pillay, J. Troya, and P. Van Gorp,
“Evaluation of model transformation approaches for model
refactoring.” Sci. Comput. Program., vol. 85, pp. 5–40, 2014.

[22] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering,” Computer, vol. 39, no. 2, pp. 25–31, Feb. 2006.

[23] E. Syriani and J. Gray, “Challenges for Addressing Quality
Factors in Model Transformation,” in ICST, 2012, pp. 929–937.

[24] M. Van Amstel, C. Lange, and M. van den Brand, “Met-
rics for analyzing the quality of model transformations,” in
QAOOSE@ECOOP, 2008.

[25] P. Van Roy and S. Haridi, Concepts, Techniques, and Models of
Computer Programming, 1st ed. The MIT Press, 2004.

[26] A. Vignaga, “Metrics for measuring atl model transformations,”
Tech. Rep., 2009.

