
IEEE Copyright Notice. Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, Alfonso Pierantonio. “Collaborative
Repositories in Model Driven Engineering”. IEEE Software. Published version are available at
http://ieeexplore.ieee.org/document/7093036/references

Collaborative Repositories in Model Driven Engineering
Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, Alfonso Pierantonio
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila Via Vetoio, L’Aquila, Italy { name . surname }@ univaq . it

Abstract: Model-Driven Engineering (MDE) promotes the systematic use of
models as first-class abstractions throughout the software development lifecycle.
Over the last few years, many MDE techniques and platforms have been conceived
for developing domain-specific modeling languages and for supporting a wide
range of model management activities. However, existing modeling platforms
neglect a number of important features that are essential for the acceptance and the
relevance of MDE in industrial contexts, e.g., the possibility to search and reuse
already developed artifacts in any stage of the development processes. Recently,
many repositories have been proposed in response to the need of the MDE
community for advanced systems that support the reuse of modeling artifacts. This
paper outlines the opportunities related to the adoption of model repositories and
discuss the challenges that still have to be addressed.

Model Driven Engineering

Model-Driven Engineering (MDE) promotes the systematic use of models as first-class abstractions
throughout the software development lifecycle. This permits to leverage abstraction by shifting development
focus from third generation programming languages code to design models expressed in domain-specific
modelling languages. The objective is to increase productivity and reduce time-to-market by enabling the
development of complex systems using models defined with concepts that are much less bound to the
underlying implementation technology and much closer to the problem domain.
Several model-driven platforms and tools are available to simplify and automate many steps of MDE
approaches. Commercial tools like Enterprise Architect, Visual Paradigm, MagicDraw, and Rhapsody
enabled the adoption of MDE for developing complex software systems in key industrial domains including
automotive, avionics, railways, and other embedded applications. According to recent studies
[WHR13,WHR14] the adoption of MDE in industry can have a positive impact on productivity,
maintainability, and traceability by relying on several artifacts that are typically produced when adopting
MDE (e.g., domain specific modeling languages, model transformations, code generators, model for testing
and simulation purposes or simply for team communications). Even though existing modeling tools provide
developers and users with features able to simplify and automate many steps of model-based development
processes, empirical studies show that barriers still exist making a wider adoption of MDE technologies
difficult [DPP14]. In particular, to deal with the growing complexity of software systems, it is necessary to
enforce consistent reuse and leverage the interconnection of the modeling artifacts that are produced and
consumed during the different phases of the applied development processes. This aspect has been
acknowledged by tool vendors that have been investing in the development of model repositories enabling
collaborative modeling supports and permitting team members to checkout, commit, and update software
models. This is similar to what happens in the case of source code development that is supported, especially
for complex systems, by version control systems.

This article outlines different model repositories that have been proposed over the last years. Each tool has
been proposed to support specific needs, e.g., collaborative modeling, the possibility to use different
modeling tools in software lifecycle management, to enable tools interoperability, to increase the reuse of
already developed models, and to enable the integration of heterogeneous models. It is worth mentioning that
in this paper, aspects like model versioning, and conflict handling are not directly considered since we see

mailto:%7Bname.surname%7D@univaq.it
http://ieeexplore.ieee.org/document/7093036/references
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it
mailto:%7Bname.surname%7D@univaq.it

them as problems and activities that occur at a higher-level of abstraction. To make a similitude, model
repositories as considered in this paper are similar to cloud storage services like Dropbox and Google Drive.
Such systems do not directly offer advanced conflict management features that instead additional or external
services might provide by properly using and extending the public APIs of such public storage systems.

Model Repositories in Model Driven Engineering: opportunities and challenges

Currently available support for discovering and reusing developed modelling artefacts is limited. As a result,
similar metamodels, transformations, code generators, and other model management systems often need to
be redeveloped from scratch, thus raising the upfront investment and compromising the productivity benefits
of model-based processes. Consequently, the availability of advanced model repositories can be key to
success and give the possibility to take advantage of many opportunities as summarized in the following.

Opportunities

Sidebar
There are two modelers working in different sites, and that want to contribute to the
specification of the same model. Modelling environments like MagicDraw permit modellers to
locally download models that are stored in teamwork servers and then commit changes once
the editing phases are completed. UML Modeler 1(UM1) starts first by creating an initial
version of the model consisting of the class Mouse including its attributes and operations.
Once completed the editing session, UM1 commits the changes to the model repository used
by the considered business unit. In this way, UML Modeler 2 (UM2) working in the same
business unit of UM1 and that has access to the repository can contribute to the specification
of the model. To this hand UM2 performs a checkout from the repository, and thus creates a
local copy of the model. UM2 operates changes to the model with the aim of introducing the
singleton design pattern. After the editing section, UM2 commits the changes to the
repository. UM1 refreshes the working copy of the model by merging changes that UM2 has
made and committed to the server. UM1 changes the model by properly specifying the
singleton design pattern for the class Mouse that was wrongly introduced by UM2. Once the
changes have been performed, UM1 commits the model to the repository.

Most of the modeling tools adopt a pessimistic scheme, i.e., modelers can lock specific model
fragments in order to avoid that other modellers having access to the same parts of the
considered model might operate conflicting model changes. Other systems like GenMyModel
provide modellers with online collaborative features that are becoming familiar and widely
used via popular software-as-a-service tools such as Google Drive and Apple iCloud.

The opportunities related to the availability of model repositories in MDE are manifold and it is possible to
mention at least the following ones:

- Community of users: multitudes of users and developers can share developed models and tools and
consequently their adoption and extension by other users are enabled. Thus, as typically happens for open
source projects, more agile processes can be applied to develop models in collaborative ways.

- Availability of certified models for verification and validation purposes: especially in the domain of
business-critical software, the need for trusted modeling artefacts is more pressing than ever. The intrinsic
quality of new model-based tools is typically enhanced by starting the development from repositories of
certified models, which can ease the difficult task of verification and validation.

- Availability of modeling artifacts for learning purposes: modeling can be a difficult task usually requiring
very experienced modelers and domain experts. Already developed models represent valuable know-how
since they capture domain insights and knowledge that might be conveyed to new modelers in order to let
them become familiar with relevant modeling patterns and practices typically employed in the considered
business contexts.

- Tool interoperability/heterogeneity: when developing and managing complex software systems different
tools are used to create and manage models at different levels of abstraction and in heterogeneous
formats. Such tool misalignment is a great obstacle to interoperability and can be solved by making use of
common repositories to store and retrieve developed artifacts by means of standardized APIs.

- Collaborative modeling: several existing modeling environments inhibit collaborative modeling and
hence prevent teams of technical and non-technical stakeholders from working together (in a distributed
environment) to specify and evaluate alternative representations of their problem domain. This is mainly
due to the fact that modeling environments are typical desktop-based and are able to manage modeling
artifacts that are locally stored. The availability of online repositories can give modelers the possibility to
collaboratively work on common modeling artifacts and share them.

- Traceability: having a common repository permits the creation and maintenance of easy-to-use cross-
links relating a comprehensive range of heterogeneous artifacts produced at different stages of the
software lifecycle. This is an influential aspect in adopting advanced repositories and weights a lot in
assessing the significance of different genres of change impact.

While the benefits of adopting model repositories have been widely recognized, they have been not yet
achieved because there are still a number of challenges to be met by existing tools as discussed in the next
sections.

Challenges
In order to fully take advantage of the previously discussed opportunities, a number of challenges still have
to be addressed. They can be distinguished among technical and non-technical ones as discussed in the
following.

Technical challenges:

- Management of different kinds of modeling artifacts: most of the existing model repositories provide
persistence options to models only. Consequently, reusability of other modeling artifacts and tools like
modeling editors, model transformations, and code generators is not supported.

- Advanced query mechanisms: advanced query techniques are of crucial relevance to retrieve artifacts
according to different criteria. For instance, models can be searched by considering the corresponding
metamodels, domain type, the particular development phase, by exploiting some tagging mechanisms, or
even querying the repository (or a part of it) by means of logical predicates (e.g., OCL).
- Model management and analysis tools as service (MaaS): modelling and model management tools are

commonly distributed as software packages that need to be downloaded and installed on client machines,
and often on top of complex software development IDEs (e.g. Eclipse). Since this can often be a burden,
particularly for non-technical stakeholders with average IT skills, it is necessary to have cloud-based
installations of model repositories and give the possibility to remotely use the stored modeling artifacts
over the net.

- Extension mechanisms: model repositories should provide core functionalities and extension mechanisms,
which permit to build new applications in order to manage new kinds of modeling artifacts and to provide
additional services.

- Federation of model repositories: each organization might have its private repositories able to interact
with public ones in order to retrieve modeling artifacts that are publicly available. Consequently,
federation mechanisms have to be properly conceived in order to seamlessly aggregate modeling artifacts
with respect to specific access and licensing policies and to ensure business entities that they would
remain the owner of the produced modeling artifacts while still benefiting the use of other model
repositories.

An aspect, which is orthogonal to all the previous challenge, is scalability. In particular, as MDE is
increasingly applied to larger and more complex systems, current generation of model management
technologies are reaching their limits and a new line of research is required in order to achieve scalability and
to enable efficient management and persistence of models larger than hundreds of megabytes in size, thus to
cope with industry-scale artifacts.

Conceptual challenges:
Further than the challenges previously mentioned, there are also non-technical ones that necessarily have to
be met in order to fully benefit from the adoption of model repositories. In particular:

- Incentives to share modeling artifacts: there are several public model repositories around, however
keeping them alive and solicit contributions from user communities is a hard task especially because each
business entity might not see any benefit from sharing their own developed artifacts. Consequently, it is
necessary to conceive rewarding mechanisms that can motivate users to share their artifacts.
- Licensing related to the shared artifacts: it is necessary to manage the intellectual property of the shared

artifacts. Similarly to what occurs in the domain of open source software, it is necessary to identify,
assess, enforce, and inferring licensing schemes under which modeling artifacts are uploaded and
maintained in model repositories.

- Guidelines to manage the sharing of artifacts and to keep their quality under control: users that would
like to reuse artifacts available in repositories should be somehow guaranteed that the available artifacts
satisfy quality requirements that has to be defined for each kind of modeling artifacts. To this end, the
sharing phase has to be moderated in a way that users upload their artifacts, which are analyzed and tested
before making them available to other users.

An overview of existing model repositories

Over the last years several repositories have been proposed both from industry and academia. Establishing
how many (active) repositories are currently available is not easy, especially because, as mentioned in the
previous section, keeping a model repository growing and operative is a difficult task. In addition, it is not
rare to store modeling artifacts in repositories which were originally used in adjacent domains like enterprise
architecture. In the following some of the most representative repositories are overviewed and they are
summarized in Table 1 with respect to the technical challenges presented in the previous section.

Rational Rhapsody Designer Manager is a collaborative design management software that helps teams and
their stakeholders to share, trace, review and manage designs. The system includes a repository that teams
can use to store, distribute, search and manage design models by means of a web-based access.
Enterprise Architect is a comprehensive UML analysis and design tool for UML, SysML, BPMN and many
other technologies. Covering software development from requirements gathering through to the analysis
stages, design models, testing and maintenance. EA is a multi-user, Windows-based, graphical tool and offers
functionalities for sharing projects in team-based and distributed development environments.
Visual Paradigm is a UML CASE Tool supporting UML 2, SysML and Business Process Modeling Notation
(BPMN) from the Object Management Group (OMG). In addition to collaborative modeling support, it
includes a model repositories and mechanisms for conflict detection and resolution.

MagicDraw is a modeling tool supporting different stages of the development process and provides also
modelers with teamwork support for pessimistic version control. It includes also reverse engineering
mechanisms, as well as database schema modeling, and DDL generation.
Modelio (the open source modeling environment) is an open source modeling environment supporting
different standard i.e. UML2, BPMN2, XMI, MDA, SysML, TOGAF, SoaML, UML Testing Profile.
Modelio provides modelers with a centralized database for storing models, managing model consistency
rules, and traceability links.
GenMyModel is an online system providing the possibility to edit UML diagrams on the cloud by means of
an advanced online modeling tool. The modeling editor enables also the sharing of models with other users
of the system or even on social networks.
CDO (Connected Data Objects) is based on a 3-tier architecture supporting EMF-based client applications,
connecting to a central model repository server and leveraging different types of pluggable data storage
back-ends like relational databases, object databases and file systems. It is also a model runtime environment
with a focus on orthogonal aspects like model scalability, transactionality, persistence, distribution, queries
and other services.
EMFStore is an operation-based version control system for models based on the Eclipse Modeling
Framework. It provides change tracking, conflict detection, merging and versioning of models. Also it
includes functionalities of repository mining for data extraction.
MORSE (Model-Aware Service) consists of a model repository that manages model-driven projects and
artifacts, and model-aware services that interact with the repository for performing reflective queries on the
models stored in the repository. The goal of MORSE is facilitate services to dynamically reflect on models,
creating model-aware services (and components) for the SOA and support these with a model repository.
Each model of the SOA is placed in the model repository. Moreover MORSE supports services and processes
integrated with model-aware services, then the traceability information is managed and transmitted by the
entire process.
MODELBUS is a model-driven tool integration framework, which permits to build seamlessly integrated
tool environments for development processs. ModelBus allows the integration of heterogeneous tools vering
the whole development lifecycle and comprising custom-made and proprietary tool. With the help of specific
adapters it is possible to connect tools to the ModelBus allowing them to share data via models and
functionality via services.
The main goal of AMOR (Adaptable Model Versioning) is the support of mechanisms to leverage version
control techniques in the area of MDE. AMOR intends to achieve precise conflict detection and resolution,
and it considers knowledge about the type of modifications the models have undergone in the course of their
evolution and knowledge about the semantics of the modeling concepts.
ReMoDD (Repository for Model-Driven Development) is collecting documented MDD case studies,
examples of models reflecting good and bad modeling practices, reference models (including metamodels)
that can be used as the basis for comparing and evaluating MDD techniques, generic models and
transformations reflecting reusable modeling experience, descriptions of modeling techniques, practices and
experiences, and modeling exercises and problems that can be used to develop classroom assignments and
projects. ReMoDD developers are working on an API to enable external tools to retrieve artifacts from the
repository directly and a web interface will be provided too.
GME (Generic Modeling Environment) is a configurable toolset that supports the easy creation of domain-
specific modeling and program synthesis environments. The metamodels specifying the modeling paradigm
are used to automatically generate the target domain-specific environment. The generated domain-specific
environment is then used to build domain models that are stored in a model database or in XML format. The
thin storage layer includes components for the different storage formats. Currently, a fast proprietary binary
file format and an XML format are supported.

Although a detailed comparison is out of the scope of this article, we wish to stress that recently different
model repositories have been proposed both by academia and industry. Next section overviews an extensible
repository, named MDEForge, which has been conceived at the Computer Science Department of the
University of L’Aquila.

Managed
artifacts

Query
mechanism

MaaS
Extension

mechanism
Federation
mechanism

Collaborative
modeling
support

Tools
interoperability

support

Academic (A) /
Industrial (I)

Rational
Rhapsody
Designer
Manager
www.ibm.com

SysML,
UML model

Advanced
query engine

Yes Yes No Yes XMI-based I

Enterprise
Architect
http://www.sparxs
ystems.com.au

SysML,
UML model

No Yes Yes No Yes XMI-based I

Visual Paradigm
http://www.visual-
paradigm.com

UML model No Yes Yes No Yes XMI-based I

MagicDraw
http://www.nomag
ic.com

UML model No Yes Yes No Yes XMI-based I

Modelio
http://www.modeli
o.org

models

Based on a
dedicated
teamwork
manager
module

No Yes Yes Yes XMI-based I

GenMyModel
https://www.genm
ymodel.com

UML
models

Web based Yes No No Yes XMI-based I

CDO
http://www.eclipse
.org/cdo

models
metamodels

Keyword-
based

Yes Yes No Yes EMF-based I

EMFStore
http://eclipse.org/e
mfstore

models
metamodels

Keyword-
based

Yes No No Yes EMF-based I

MORSE
http://www.infosys
.tuwien.ac.at

models Structural Yes Yes No Yes Service-based I

MODELBUS
http://www.model
bus.org

models
metamodels
transformati

ons

Browsing Yes Yes No Yes Adapter-based I

AMOR
http://www.model
versioning.org

models
metamodels

No No Yes No Yes XMI-based A

ReMoDD
http://www.cs.colo
state.edu/remodd

models
metamodels
transformati

ons

Web based Yes No No No No A

GME
http://www.isis.va
nderbilt.edu/projec
ts/gme

metamodels,
models

Browsing No Yes No No

Based on the
COM

component
model

Both

MDEForge
http://www.mdefor
ge.org

models,
metamodels,
transformati
ons, editors.

Tag based Yes Yes Not yet No REST API based A

Table 1: A sample of model repositories. This list is inevitably non-exhaustive and merely
intended to reflect what kinds of systems are available

MDEForge: an extensible Web-based model repository

MDEForge [BDD14] has been conceived to deal with the challenges discussed in the previous sections. In
particular MDEForge aims at:

- providing a community-based modeling repository, which underpins the development, analysis and reuse
of any kinds of modeling artifacts not limited to only models;

- supporting advanced mechanisms to query the repository and find the required modeling artifacts;
- enabling the adoption of model management tools as software-as-a-service;
- being modular and extendible;

As shown in Fig. 1 the MDEForge platform consists a number of services that can be used by means of both
a Web access and programmatic interfaces (API) that enable their adoption as software as a service. In
particular, core services are provided to enable the management of modeling artifacts, namely
transformations, models, metamodels, and editors. Atop of such core services, extensions can be developed
to add new functionalities.

Figure 1: MDEForge overview

Conclusions

The productivity and quality benefits of MDE are testified by several industrial
experiences in different application domains including automotive, space
industries, embedded systems, and home automation. In order to deal with the
complexity of large systems, and the consequent specification and
manipulation of corresponding models, increasingly modeling teams have been
started to adopt model repositories. They permit different modelers to
collaboratively work to the same modeling activities, to use different tools by
managing their interoperability, and to reuse and merge already developed
model fragments. To completely take advantage of the opportunities related to
the adoption of model repositories there are some issues that have to be still
addressed. For instance, it is necessary to have advanced mechanisms to query repositories
even in case of stored artifacts of megabytes in size. Importantly, it is necessary to define inter-
repositories collaboration models, in order to define in a precise way how different repositories can
be federated to collaborate and share their stored artefacts with each other.

References
[BDD14] Francesco Basciani, Juri Di Rocco, Davide Di Ruscio, Amleto Di Salle, Ludovico Iovino and Alfonso
Pierantonio, MDEForge: an extensible Web-based modeling platform, in: CloudMDE Workshop at MoDELS 2014,
Valencia, Spain, http://ceur-ws.org/, 2014

[WHR13] Jon Whittle, John Hutchinson, Mark Rouncefield, Hkan Burden, and Rogardt Heldal. Industrial adoption of
model-driven engineering: Are the tools really the problem? In Model-Driven Engineering Languages and Systems,
volume 8107 of LNCS, pages 1–17. Springer Berlin Heidelberg, 2013.

[WHR14] Whittle, J.; Hutchinson, J.; Rouncefield, M., "The State of Practice in Model-Driven Engineering," Software,
IEEE , vol.31, no.3, pp.79,85, May-June 2014

	Model Driven Engineering
	Model Repositories in Model Driven Engineering: opportunities and challenges
	Opportunities
	Challenges

	An overview of existing model repositories
	MDEForge: an extensible Web-based model repository
	Conclusions
	References

