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Geolocators are a well-established technology to reconstruct migration

routes of animals that are too small to carry satellite tags (e.g. passerine

birds). These devices record environmental light-level data that enable the

reconstruction of daily positions from the time of twilight. However, all cur-

rent methods for analysing geolocator data require manual pre-processing of

raw records to eliminate twilight events showing unnatural variation in light

levels, a step that is time-consuming and must be accomplished by a trained

expert. Here, we propose and implement advanced machine learning tech-

niques to automate this procedure and we apply them to 108 migration

tracks of barn swallows (Hirundo rustica). We show that routes reconstructed

from the automated pre-processing are comparable to those obtained from

manual selection accomplished by a human expert. This raises the possibi-

lity of fully automating light-level geolocator data analysis and possibly

analysing the large amount of data already collected on several species.

1. Introduction
Recent decades have been characterized by environmental and climatic changes

that occur on the global scale [1]. Ecological systems are responding to such

changes with shifts in distribution and changes in the timing of ecological

events [2]. Migratory animals are considered particularly sensitive to global

changes because they should adjust their life cycle to changes that occur at

different rates in areas that are separated by long distances [3,4]. It is, therefore,

particularly important to understand if and how the movement pattern of long-

distance migratory species is affected by climate and environmental change.

The tracking of migratory animals is a very active field of biological study

[5–9]. Knowing the positions visited and the routes travelled by migratory

organisms is in fact crucial information, for instance, to design management

policies for species conservation [10,11] or for managing disease spread [12].

This research field is particularly challenging and very interdisciplinary,

because it requires the integration of knowledge coming from biology and

environmental science with that coming from IT engineering. The continuous

development of new devices—which allow monitoring, recording and some-

times transmitting the positions of individuals over long time periods and

large spatial extents—opens novel research perspectives that must be

accompanied by similarly advanced ways of interpreting the newly available

data through proper modelling and software.

Migratory birds are ideal organisms for enhancing the current research in

the field, since an incredible variety of movement patterns is offered to
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Figure 1. Comparison between a migration track estimated with FLightR
using uninterpreted twilight data (dotted purple) and expert-classified twi-
light data (solid black). Filled circles represent the estimated bird position
at each twilight event. (Online version in colour.)
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investigation: every year, billions of individuals of several

species make extensive journeys, covering astonishing dis-

tances over land or ocean and arriving at their destinations

with impressive precision [13]. Some of these movements

can be tracked with high-precision systems, such as GPS or

other satellite receivers. The necessary equipment, however,

is still too heavy to be carried by individuals of small species,

for which every fraction of a gram of extra weight from track-

ing devices can make a huge difference in terms of success or

failure of their migration event and their survival [14,15].

Thanks to their small size and minimal weight, light-level

geolocators represent a valid, well-established technology

to track movements of long-distance migratory animals

[16–18]. These devices record the solar irradiance at regular

time intervals, in the order of minutes. Starting from these

data, it is possible to infer the geographical positions visited

by an individual during its migration journeys using

methods based on times of sunrise and sunset developed in

the last decade [19,20]. However, a fundamental step

required by all available methods is a sort of pre-processing

of raw light-level data before treatment. This is because

light measurements can be affected by shading effects due

to different causes (e.g. cloudiness or bird resting in a dark

cavity) that, if not filtered out, introduce errors into any

method for estimating positions.

Recent programs for reconstructing migration routes from

geolocator data (e.g. FLightR, [21]), rely on light-level values

measured around twilight events (i.e. the ‘template fit’

method, developed by Ekstrom [22]) for estimating positions.

Hence, each recorded twilight event showing unnatural vari-

ation of light levels around twilight (e.g. too abrupt changes

of light levels in short periods of time or non-monotonic

changes of light levels near twilights) needs to be manually

removed by an expert performing a visual selection. If this

operation is not performed correctly, the reconstruction of

the routes is strongly influenced by noisy twilight events,

which are responsible for producing highly biased estimates

of the geographical positions (figure 1).

Since the track of one geolocator usually encompasses the

movements of an individual for about 10 months, this

manual selection requires the by-eye inspection of at least

600 twilight events, which is quite a cumbersome and time-
consuming task. Some R packages have been developed to

assist the expert during this work. The software TwGeos

[23], for example, automatically identifies twilight events

from raw light data and easily displays light variations

occurring during all sunrises or sunsets (figure 2).

However, the selection of twilight events needs to be

performed manually and it is still quite a slow and delicate

operation, as on average an expert can classify the twilight

events from no more than a handful of geolocators per day.

The expert must discriminate noisy (shadowed) from natural

twilight events by inspecting two different patterns: the vari-

ation of light intensity values after sunrise/before sunset as

measured by the geolocators on the focal day i, and the

smoothness of the day-to-day variation of sunrise and sunsets

times around day i. From a statistical learning point of view,

this problem can be interpreted as a binary classification

(keep versus discard) of each twilight event to be performed

using a set of numerical variables (predictors).

The specific aim of the present work is to develop a pro-

cedure that could automate twilight event classification by

the implementation of machine learning (ML) algorithms.

To build a substantial training dataset, we used more than

100 geolocator tracks of barn swallows during autumn and

spring migration, for which we had previously manually

classified about 40 000 twilight events. This large reference

dataset allowed us to apply, in addition to a standard

linear classifier (i.e. logistic regression, LR), also two ML

classification algorithms (random forest, RF, and deep

neural network, DNN). We selected the inputs to the classi-

fiers from the geolocator light measurements and from the

times of the previously identified twilight events. Finally,

we tested the reliability of classifications by the different

algorithms by estimating the migration routes travelled by

four target individuals from twilights classified by each of

the different algorithms and comparing the resulting routes

to the one estimated from the expert-selected twilights.
2. Material and methods
2.1. Processing of geolocator data
We relied on data from 65 SOI-GDL2.10 and 43 SOI-GDL2.11

geolocators (Swiss Ornithological Inst., http://www.vogel-

warte.ch/indirect-trackinggeolocator.html), 101 of which were

used in the ornithological study of Liechti et al. [24] to analyse

the migration of three populations of Swiss and Italian barn

swallows (Hirundo rustica) between 2010 and 2012. SOI-GDL

geolocators detect and store light intensity every 5 min by assign-

ing an integer value on a scale between 0 (full dark) and 64

(maximum detectable luminosity). Each geolocator in the dataset

registered an average of 381 (with a standard deviation of 144)

twilight events, providing a total of 39 572 twilight events. We

used TwGeos R package to pre-process raw data, identifying twi-

light events timing, manually inspecting every suggested

twilight event and discarding those that showed light curves

that were too different from the ‘natural’ ones (i.e. those that

would be measured if the geolocator was placed in an open air

location at the same geographical position, figure 2) and/or

whose timing differed in an inconsistent way from that of

the corresponding events occurring the days before or after the

focal date.

Because the classification of certain twilights could be some-

what uncertain even for an expert (i.e. the light curve shows an

intermediate pattern between the natural variation of accepted

twilights and the luminosity increases in shadowed events), the

http://www.vogelwarte.ch/indirect-trackinggeolocator.html
http://www.vogelwarte.ch/indirect-trackinggeolocator.html
http://www.vogelwarte.ch/indirect-trackinggeolocator.html
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Figure 2. Light measurements of a light-level geolocator. (a) Geolocator raw data pre-processed by TwGeos R package, x-axis represents the day of the year, y-axis
is the hour of the day. Values on the grey scale represent light intensity measured by the geolocator. Three probable phases of barn swallow annual phenological
cycle are highlighted: autumn migration (green rectangle), spring migration (red rectangle) and the spring/summer stay at the breeding colony (yellow rectangle).
(b) Light intensity patterns of three distinct twilight events (sunrises) taken as examples from (a): a natural variation of light intensity at sunrise (curve II, solid
green) is contrasted with unnatural variations due to their unacceptably rapid increase in light (curve I, dashed magenta) or shadowed data (curve III, dotted cyan).
(Online version in colour.)
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same expert performing the first classification (labelled EXP1

above) re-classified after few weeks the twilight events registered

by the geolocators of four target individuals cited in the Intro-

duction (this dataset of the ‘second classification by the same

expert’ will be named EXP2). The twilight events of these four

‘example’ geolocators were left out of the training dataset. We

used the example set of twilight data to assess the repeatability

of the expert classification and the ones performed by the ML

algorithms by assessing the values of intraclass correlation coef-

ficient (ICC) [25], usually defined, in the framework of random

effects models, as the proportion of the total variance accounted

for by differences among groups (aka classes, in statistical termi-

nology). In general, for a model with only one random effect, the

ICC is equal to

ICC ¼
s2

G

s2
G þ s2

R

,

where s2
G is the between-groups (i.e. classification method)

variance and s2
R is the residual variance of the model. Repeatabil-

ity can be interpreted as the expected within-group correlation

among measurements [26]. In our case, the response variable is

the binary twilight selection (‘keep’ ¼ 0, ‘discard’ ¼ 1), while the

geolocator-ID and the twilight event ID are inserted as nested

random effects (twilight-ID nested within geolocator-ID).

We computed ICC values from a generalized linear mixed

model assuming a binomial data distribution with logit link

function, built with lme4 R package [27].

2.2. Feature selection
The expert classification of thousands of twilight events showed

that the most telling evidence guiding the expert’s decision was

based on the shapes of light curves in close proximity to each twi-

light event. Therefore, we first selected as relevant features for our

ML algorithms the eight light measurements of each geolocator

either following each sunrise or preceding each sunset. For the

large majority of twilight events, it was sufficient for the expert

to inspect these eight values in order to discriminate between

reliable (natural) and unreliable (shadowed) data. Regular mono-

tonic increases (dawn) or decreases (dusk) of light intensity after

dawn or before dusk are a necessary, but not sufficient, condition

for recognizing natural twilights. Indeed, some dusks and dawns

had to be more closely evaluated by the expert, who contrasted the

twilight times with those recorded in nearby days (figure 2). As

additional input variables for our classifier, we therefore added
the timing of all twilight events occurring in a 9-day window

centred on the focal event (i.e. day i+4 days). To further improve

the ability of the algorithm to capture the procedure used by the

expert in the classification process, we added the following four

additional input variables that qualify different properties of the

twilight hours in surrounding days:

(1) the time difference between the twilight timing of the focal

day i and the average twilight timings of top 50% of earliest

sunrises/latest sunsets in a moving window of 9 days

centred on the focal day (i.e. day i+ 4 days). The aim of

this variable was to identify the twilight events that occurred

at very different times from neighbours (generally late

sunrises and early sunsets, figure 2);

(2) same as (1), but with the average twilight timing computed

over a mobile window of 19 days (i.e. day i+ 9 days) to

identify outliers on a wider time span;

(3) the standard deviation of night duration on a mobile

window of 9 days (i.e. day i+4 days). This variable was cre-

ated to easily identify the twilight events of the periods in

which a bird was at its breeding colony, because patterns

of sunrise and sunset times were very variable in that

period (see again figure 2) due to the shadowing caused

by the buildings where the barn swallows rest during the

night. The expert classification discarded many of these twi-

light events;

(4) the residual of a linear regression of twilight timings (either

sunrises or sunsets) on date in a mobile window of 9 days

(i.e. day i+4 days). This variable was built to identify out-

liers during the migration periods, when the sunrise and

sunset times change considerably, but regularly, from one

day to another (see again figure 2).

2.3. Machine learning classifiers
Using ML terminology, our task is a supervised binary classifi-

cation learning problem, where the set of twilights must be

partitioned into two groups based on characteristics of the fea-

tures of each element. The algorithms used to train classifiers

require a dataset where each sample is qualified by its features

and is already categorized. Starting from these data, supervised

learning techniques can be used to train a model predicting

which group each twilight belongs to.

First, we implemented a simple linear classifier, LR, which

splits the high-dimensional feature space with a hyperplane
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and classifies each sample based on its position relative to a

linear decision boundary [28]. This simple classifier was used

as benchmark for a fair comparison with the other more articu-

lated models.

Next, we introduced two advanced nonlinear ML models

which efficiently deal with problems where classes are not linearly

separable: an RF [29] and a DNN [30].

An RF is an ensemble of classification trees: each tree is the

result of a recursive partition of the feature space, here performed

by a Boolean test on a single variable at each node. As a direct

consequence, the feature space in each tree is separated by

orthogonal hyperplanes, which results in a box-like decision

[31]. Each classification tree is made on a random (both on

instances and features) subset of the training dataset. The algor-

ithm that builds the tree operates with a top-down procedure,

choosing at each step the variable that performs the best split

of the data using an evaluation function. In particular, we

implemented the RF using the Gini impurity as the evaluation

function, a standard method to evaluate partitioning in tree-

based algorithms. Given a set of objects of different classes,

Gini impurity is defined as the probability of obtaining two

objects of different classes by a random sample on the set [32].

A DNN is an algorithm that repeatedly performs a nonlinear

transformation of the feature space (each hidden layer performs

one transformation) and, at the end, splits the transformed

multi-dimensional space with a hyperplane, as LR does. The

DNN has multiple layers, each of which is composed of one or

more nodes (neurons). The neurons of the first layer correspond

to the features. There are different ways to connect two sub-

sequent layers: the most used way is fully connected, also called

dense, where each node is computed as a nonlinear function of

all nodes of the previous layer. Alternative structures to fully

connected layers are convolutional layers. In this case, each

node is computed as a nonlinear function of a subset of neigh-

bouring nodes of the previous layer (i.e. using a mobile

window to select the nodes that will connect to the neuron of

the following layer). For the structure of our DNN, we used

dense layers, and we also explored and tested convolutional

layers, which process, with one-dimensional (1D) nonlinear fil-

ters, each of the features of the three time series of the focal

twilight (i.e. the eight after sunrise/pre-sunset light measure-

ments and the two series of the timing of the nine sunrises and

sunsets around the specific twilight event), since they are

known to be efficient in dealing with time series for other pro-

blems [33]. The convolutional filters extract multiple new

features, whose definition is optimized during the training pro-

cess. These new features, together with the four combined

features selected by the expert, are given as input to the last

fully connected layers of the DNN, which finally performs the

classification (figure 3). As usual for convolutional networks,

an additional nonlinearity is included in each layer with a Max
Pooling process, which applies a piecewise maximum operator

at the output of the convolutional filters. At the end of the

whole structure, the Softmax activation function normalizes to 1

the values in the output layer [34].

Thanks to the large amount of data available, we decided to

randomly split the entire dataset into three sets, for training

(70%), cross-validation (15%) and test (15%), respectively. The

cross-validation dataset was used to select the best hyper-

parametrization of each model (e.g. the maximum number of

splits of the RF or the number of hidden layers of the neural

network), while the test set was devoted to compare the perform-

ances of the resulting models of each class (LR, RF and the

different architectures of the DNN).

We did not adopt more advanced model validation tech-

niques, such as k-fold or leave-one-out cross-validation, as we

did not note any overfitting problems during any phase of the

work. We also did not use any precaution to train LR and RF
(the former has a very low number of parameters compared to

the task complexity, the latter is an algorithm that very unlikely

overfits data if a sufficient number of trees is used; [35]). By con-

trast, we used an early stopping criterion and a regularization for

the same procedure in DNN. We implemented and trained all

ML algorithms using the Python packages SCIKIT-LEARN [36] and

KERAS [37]. The pseudocode of the whole analysis is reported

in electronic supplementary material, appendix S1.

2.4. Estimation and comparison of migration routes
We used FLightR R package to estimate the migration routes of

the four example individuals. This software was designed to

reconstruct migration routes of birds from geolocator light

measurements. FLightR is based on a hidden Markov chain

model, obtained by merging a physical observational model

of the light variation (i.e. using astronomical equations to get a

likelihood for each geographical position from repeated measure-

ments of light during twilight events) with an uncorrelated

random walk model of bird movement (for further details, see

[38]). To get a posterior estimate of the state of the hidden

Markov model (i.e. the geographical distribution of the position

of the tagged bird), FLightR uses a particle filter [39], a Monte

Carlo algorithm that performs particularly well with nonlinear

hidden models and noisy measurements (i.e. the light values).

At the end of its run, the particle filter provides an estimate of

the central tendency and of the associated uncertainty of the

route travelled by the bird.

For each method and for each individual, we generated a

TAGS file by linking the geolocator measurements with the

output of the different twilight classification methods and used

this file as input in the FLightR analysis. The resulting paths

(LR, RF, DNN and second classification by the expert: EXP2)

were compared to those obtained from the first classification

by the expert (EXP1), both visually and by calculating—on

spring and autumn separately—the one-way distance (OWD,

[40]) between migration paths. For two migration paths A and

B, the OWD is calculated as follows: for each point of route A,

the algorithm computes the distance between it and its ‘corre-

sponding position’ on route B (defined as the position of B at

the minimum great circle distance from the focal point in A);

then it obtains OWDA!B as the sum of the previous distances

divided by the length of route A. The final OWD measure is

defined as
1

2
(OWDA!B þOWDB!A):
3. Results
3.1. Bias and variance trade-off
The confusion matrix for the three ML models used in this

study (figure 4) revealed that the performances obtained in

the three phases of the model calibration (training, validation

and test) were nearly the same. We therefore concluded that

we avoided overfitting. The RF and the DNN performed sig-

nificantly better than the simpler LR classifier, but they

performed similarly to each other.

The absence of overfitting, however, does not guarantee

that the ML models would perform similarly to a human

expert. Figure 5 compares the performances of the ML algor-

ithms on the classification of the example individuals with

the results that we obtained in the second manual classifi-

cation (performed by the same human expert who

classified data for training ML algorithms). It can be noted

that the selectivity (true negative/ground truth negative) of

the RF and the DNN is comparable with that of the expert,

while the recall (true positive/ground truth positive) of the
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two algorithms is slightly lower than that of the expert. Even

in terms of overall accuracy, the LR (74.3) performed worse

than the other two classifiers (RF: 87.6; DNN: 88.4), which

in turn have a slightly lower score relative to the second

classification by the expert (EXP2: 90.7). This last score

means that the same expert doing the second classification

(EXP2) provided a different classification than the one

given in his first attempt (EXP1) in 9.3% of cases.

Table 1 shows the ICCs calculated from the results of the

different classification methods. The ICC value from a mixed

model that included the results of all classification methods

is quite high (ICCALL versus ALL¼ 0.82), suggesting a generally

good agreement between the expert classification and results of

the ML models. The expert classification was the most
consistent, as shown by the ICC between his two classifications

(ICCEXP1 versus EXP2¼ 0.87). Among the other methods, RF and

DNN had similar performances and outperformed LR. We can

therefore state that both classification procedures operated by

the expert and by ML algorithms are repeatable. The ICC at

the geolocator level was never higher than 0.0114, implying

that the classification of the twilight events did not depend

on the features of an individual geolocator or of the barn swal-

low that carried it (i.e. it did not occur, for instance, that

twilight events from one geolocator were consistently better

than those of another). This means that the classification of twi-

light events was almost independent of the specific geolocator.

This result was not strictly predictable as, in principle, individ-

ual barn swallows may differ in their behaviour during
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(orange), DNN (yellow) and second classification by the expert (EXP2, grey). Filled polygons refer to first expert classification (eastern: autumn migration, western:
spring migration; boundaries are obtained as meanþstandard deviation of 10 repetitions of FLightR on EXP1 classification). (Online version in colour.)

Table 1. Intraclass correlation coefficient (ICC) values computed for all
classification types (ALL versus ALL) and separately for each model against
the first classification by the expert (EXP1). The second column shows ICC
values at the level of the twilight event identifier (nested within
geolocator); the third column indicates ICC values at the level of the
geolocator identifier.

comparison ICCtwilight-ID (nested) ICCgeolocator-ID

ALL versus ALL 0.824 0.011

EXP1 versus LR 0.542 0.011

EXP1 versus RF 0.826 0.009

EXP1 versus DNN 0.840 0.011

EXP1 versus EXP2 0.869 0.007
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twilight events (e.g. they may consistently stay in more shaded

or more exposed environments), which may affect the light

curves on which the classification process is based.
3.2. Track comparison
Beyond comparing the classifications of twilights performed

by our different ML algorithms, we aimed to assess whether

ML can provide a reliable pre-filtering of twilight data for

reconstructing migration routes of animals. This is crucial

for assessing the utility of ML algorithms, as it would

enable the most time-consuming step in geolocator data
analysis to be automated. Figure 6 shows a representative

route of one of the example individuals generated by

FLightR (displayed as average latitude and average longitude

of all particles at each twilight). The route is estimated start-

ing from the classification operated by the ML algorithms

and by the expert. The path obtained from twilights classified

by the LR clearly presents estimation errors, which, together

with the lower classification performance with respect to

other methods exposed above, suggests that this method

may be not suitable for safely automating light curve editing.

By contrast, the routes generated from the classification of the

RF and the DNN are very similar to those obtained from

the expert classifications. We obtained similar results also

for the other three example individuals (see electronic

supplementary material, appendix S2).

The inconsistencies observed between the paths obtained

from the RF, DNN, EXP1 and EXP2 classifications could be

generated both by the different selection of twilight events

and by the intrinsically stochastic nature of the Monte Carlo

algorithm (i.e. the particle filter) of FLightR that can produce

slightly different outputs, particularly around equinoxes,

when the information provided by the light curves cannot

be used to estimate latitude reliably (for further details, see

[41]). In addition, it is necessary to highlight that the estimate

of the positions provided by the analysis of geolocator data is

affected by a significative uncertainty: on average 50 km in

longitude and 200 km in latitude [42].

Table 2 shows the values of the OWD calculated by

comparing the routes obtained from the classification



Table 2. Comparison of the OWD metric computed on the four test individuals between the routes generated by first classification by the expert (EXP1) and
the other classification methods: LR, RF, DNN and our second classification by the expert (EXP2). The length of estimated paths and the computation time of
each method for the four test individuals are also reported.

classification

OWD path length (103 km) computation time (s)

mean s.d. mean s.d. mean s.d.

LR 4.53 1.97 15.3 2.89 ,0.001 ,0.001

RF 3.68 1.32 11.4 1.22 2.041 0.348

DNN 2.85 1.14 11.1 0.96 15.804 4.872

EXP2 3.40 1.60 11.1 1.10 .1200 .60
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made by LR, RF, DNN and the second classification by the

expert (EXP2) with the paths estimated through the first

classification by the expert (EXP1).

A mixed-effect ANOVA of OWD with geolocator-ID as a

random effect revealed significant differences according to

classification types (F3,9 ¼ 6.04, p ¼ 0.015). Post hoc tests indi-

cated that OWD of LR was significantly larger than that of

EXP2 and DNN (t9 � 2.79, p � 0.021) and marginally not sig-

nificantly larger than that of RF (t9 ¼ 2.10, p ¼ 0.065), while

those of RF, DNN and EXP2 did not differ significantly

from one another (jt9j � 1.96, p � 0.082). Table 2 shows also

the average and the standard deviation of computation

time for the classification of the four test individuals (compu-

tations performed on an Intelw CoreTM i3-2310M CPU,

2.10 GHz). The RF was seven times faster than the DNN,

but they were both much faster than that the human

expert, who needed more than 20 min per geolocator to per-

form the twilight classification. The small difference in

computation time (few seconds) between RF and DNN is

negligible when compared with the average computation

time required by FLightR to estimate the migratory route of

one geolocator (around 2 h in our case).
4. Conclusion
The ML algorithms proposed here allow automation of a

time-consuming human task, twilight selection, that is a

necessary preliminary step for estimating migration routes

from geolocator data. We constructed a dataset of almost 40

000 expert-classified twilight events, on the basis of which

we built and calibrated three different ML algorithms, select-

ing predictor features that summarize the information

processed by the human classifier during his choice.

The performances of complex algorithms such as RFs and

DNNs can be compared with those of the human expert, both

in classification scores, repeatability and in the routes esti-

mated by the FLightR software based on the classified

twilights. By contrast, a simpler technique such as LR is not

able to correctly classify the twilight events, causing highly

unreliable outputs in the subsequent phase of route estimation.

For the geolocator models and bird species used in this

study, it is therefore possible to automate the classification

of twilight events and obtain reliable results in the reconstruc-

tion of migration routes. Further twilight measurements from

other geolocator models and/or from different species may

be useful for a large-scale extension of this automatic pro-

cedure in the field of migratory paths reconstruction by
light measurements. Although we have no data to prove it

at present, we speculate that the trained models could also

be applied to other species. In fact, light data retrieved by

geolocators applied on bird species with different behaviours

could look quite different between one another, possibly

influencing the ratio between natural and shadowed twilight

events recorded by the geolocator. Yet, this does not appear

to negatively affect the classifiers. On the other side, the

extension to other geolocator models is more critical, since

they may register light values using different sampling inter-

vals, different value ranges and even different relationships

between environmental light intensity and light measure-

ments. For this reason, some adjustments to standardize

measurements from different geolocators would be required.

In this context, the DNN may have a remarkable

advantage with respect to the RF. The dataset of geolocator

measurements are usually composed of a limited number of

classified samples, as manual twilight selection is a very

time-consuming task. In principle, the training process

would have to be repeated from scratch, but the small

number of records would probably turn out to be insuffi-

cient to properly calibrate complex classifiers. A DNN can

take advantage of what it learned from bigger datasets,

such as the one considered in this paper, thanks to a learn-

ing technique known as fine-tuning. In this case, the

parameters of the front layers, which extract general fea-

tures, are kept, whereas the parameters of the final, more

task-specific, layers are re-trained on the new dataset. The

same process cannot be applied to an RF, which would

need to be trained again from scratch on every new dataset.

Thus, while the two algorithms have comparable perform-

ances, the DNN has greater flexibility in dealing with new

tasks, maintaining the knowledge extracted from previous

datasets.

Eventually, a preliminary analysis (i.e. retraining models

on data subsets) on how the number of labelled samples

available would affect the classifiers precision has been per-

formed. The two advanced ML algorithms (RF and DNN)

could maintain similar performances to the one presented

in this study, obtained with a dataset of almost 40 000

events, using just 10 000 classified twilights, which corre-

spond to almost 20 complete geolocator tracks. However,

this result is related to this specific case: algorithms trained

with other geolocator devices and/or other experts classifi-

cations could in principle require a different number of

twilight events.

Data accessibility. This article has no additional data.
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