PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Girolami M., Chessa S., Adami G., Dragone M., Foschini L. Sensing interpolation strategies for a mobile crowdsensing platform. Technical report, 2017.
 
 
Abstract
(English)
Mobile Crowd Sensing (MCS) allows an efficient collection of heterogeneous data over large areas, leveraging on the cooperation of MCS subscribers that offer services on their smartphones to this purpose. However, the coverage that a MCS platform can provide for a given area depends on the availability of subscribers and on their mobility in that area. To guarantee a better coverage, a MCS platform may employ a combination of static and mobile sensors and interpolation strategies that may provide meaningful data for all the area under observation. We discuss how two mechanisms (mixing static and mobile sensors and interpolation) can be combined together by using the large- scale mobility datasets of ParticipAct and the Weather Underground dataset.
Subject Mobile Crowdsensing
Human Mobility
Kriging
C.2 COMPUTER-COMMUNICATION NETWORKS


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional