Istituto di Scienza e Tecnologie dell'Informazione     
Xiao J., Chiaradonna S., Di Giandomenico F., Pimentel A. Improving voltage control in MV smart grids. In: SmartGridComm 2016 - IEEE International Conference on Smart Grid Communications (Sydney, Australia, 6-9 November 2016). Proceedings, article n. 7778791. IEEE, 2016.
Smart grids aim at evolving the traditional electrical grid system by making increasing use of sophisticated control and communication network technology, to properly deal with the high penetration of controllable assets, such as distributed generators and flexible loads, and their associated challenges. Since electrical grids are critical infrastructures, control strategies regulating their operation need to face both efficiency and cost aspects, as well as resilience related ones in order to assure reliable service. Keeping the focus on the medium voltage control functionality, in this paper we present a study of the event-triggered voltage control algorithm to satisfy voltage control requirements. In particular, the opportunity to introduce soft bounds to enhance voltage stability to counteract the effect of control delay is explored in a variety of scenarios, including fault presence due to attacks to the communication network. Through a developed stochastic model-based framework, quantitative analyses are performed on a realistic MV testbed grid, to demonstrate the feasibility and utility of the proposed contribution.
URL: http://ieeexplore.ieee.org/document/7778791/
DOI: 10.1109/SmartGridComm.2016.7778791
Subject Electrical Smart Grid
Voltage Control Delay
Soft Bound
Model Based Simulations
D.2.2 SOFTWARE ENGINEERING. Design Tools and Techniques

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional