PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Germanese D., D'Acunto M., Salvetti O. Design of a breath analysis device for self-monitoring and remote health-care. In: BIOSTEC 2016 - 9th International Joint Conference on Biomedical Engineering Systems and Technologies - Doctoral Consortium (Roma, Italy, 21-23 February 2016). Proceedings, pp. 9 - 14. SciTePress, 2016.
 
 
Abstract
(English)
Technique as new as promising, breath analysis enables the monitoring of biochemical processes in human body in a non-invasive way. This is why it is drawing, more and more, the attention of scientific community: many studies have been addressed in order to find a correlation between breath volatile organic compounds (VOCs) and several diseases. Despite its potential, breath analysis is still far from being used in clinical practice. These are some of the principal reasons: (i)high costs for the standard analytical instrumentation; (ii)need of specialized personnel for the interpretation of the results; (iii)lack of standardized procedures to collect breath samples. Our aim is to develop a device, which we call Wize Sniffer (WS), based on commercial gas sensors, which is: (i)able to analyse breath gases in real time; (ii)portable; (iii)low-cost; (iv)easy-to-use also for non-specialized personnel. Another aim is to foster homecare, that means promote the purchase and the use, also in home environment, of such device. The Wize Sniffer is composed of three modules: signal measurement, signal conditioning and signal processing. To satisfy the goal of developing a device by using low-cost technology, its core is composed of an array of commercial, low cost, semiconductor-based gas sensors, and a widely employed open source controller: an Arduino board. To promote the use of such device also in home environment, and foster its daily use, it is programmed in order to send breath test results also to a remote pc: the pc of user's physician, for example. In addition, the design of the Wize Sniffer is based on a modular configuration, thus enabling to change the type of the gas sensors according to the breath molecules to be detected. In this case, we focus our attention to the prevention of cardio-metabolic risk, for which the healthcare systems are registering an exponential growth of social costs, by monitoring those dangerous habits for cardio-metabolic risk itself.
Subject Breath analysis
Gas sensors
Home-care
Portable device
Self-monitoring
Signal processing
J.3 LIFE AND MEDICAL SCIENCES


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional