Istituto di Scienza e Tecnologie dell'Informazione     
Pickup D., Sun X., Rosin P. L., Martin R. R., Cheng Z., Lian Z., Aono M., Hamza A. B., Bronstein A. M., Bronstein M. M., Bu S., Castellani U., Cheng S., Garro V., Giachetti A., Godil A. A., Isaia L., Han J., Johan H., Lai L., Li B., Li C., Li H., Litman R., Liu X., Liu Z., Lu Y., Sun L., Tam G., Tatsuma A., Ye J. Shape retrieval of non-rigid 3D human models. In: International Journal of Computer Vision, vol. 120 (2) pp. 169 - 193. Springer, 2016.
3D models of humans are commonly used within computer graphics and vision, and so the ability to distinguish between body shapes is an important shape retrieval problem. We extend our recent paper which provided a benchmark for testing non-rigid 3D shape retrieval algorithms on 3D human models. This benchmark provided a far stricter challenge than previous shape benchmarks. We have added 145 new models for use as a separate training set, in order to standardise the training data used and provide a fairer comparison. We have also included experiments with the FAUST dataset of human scans. All participants of the previous benchmark study have taken part in the new tests reported here, many providing updated results using the new data. In addition, further participants have also taken part, and we provide extra analysis of the retrieval results. A total of 25 different shape retrieval methods are compared.
URL: http://link.springer.com/article/10.1007%2Fs11263-016-0903-8
DOI: 10.1007/s11263-016-0903-8
Subject Benchmark
3D Shape retrieval
Non-rigid 3D shape retrieval
3D humans
H.3.3 Information Search and Retrieval

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional