PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Esuli A., Sebastiani F. Optimizing text quantifiers for multivariate loss functions. In: ACM Transactions on Knowledge Discovery from Data, vol. 9 (4) article n. 27. ACM, 2015.
 
 
Abstract
(English)
We address the problem of quantification, a supervised learning task whose goal is, given a class, to estimate the relative frequency (or prevalence) of the class in a dataset of unlabeled items. Quantification has several applications in data and text mining, such as estimating the prevalence of positive reviews in a set of reviews of a given product or estimating the prevalence of a given support issue in a dataset of transcripts of phone calls to tech support. So far, quantification has been addressed by learning a general-purpose classifier, counting the unlabeled items that have been assigned the class, and tuning the obtained counts according to some heuristics. In this article, we depart from the tradition of using general-purpose classifiers and use instead a supervised learning model for structured prediction, capable of generating classifiers directly optimized for the (multivariate and nonlinear) function used for evaluating quantification accuracy. The experiments that we have run on 5,500 binary high-dimensional datasets (averaging more than 14,000 documents each) show that this method is more accurate, more stable, and more efficient than existing state-of-the-art quantification methods.
URL: http://dl.acm.org/citation.cfm?doid=2786971.2700406
DOI: 10.1145/2700406
Subject Quantification
I.2.6 Learning


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional