Istituto di Scienza e Tecnologie dell'Informazione     
Kobos M., Bolikowski ┼., Horst M., Manghi P., Manola N., Schirrwagen J. Information inference in scholarly communication infrastructures: the OpenAIREplus project experience. In: Procedia Computer Science, vol. 38 pp. 92 - 99. Special issue: 10th Italian Research Conference on Digital Libraries, IRCDL 2014. Maristella Agosti, Tiziana Catarci, Floriana Esposito (eds.). Elsevier, 2014.
The Information Inference Framework presented in this paper provides a general-purpose suite of tools enabling the definition and execution of flexible and reliable data processing workflows whose nodes offer application-specific processing capabilities. The IIF is designed for the purpose of processing big data, and it is implemented on top of Apache Hadoop-related technologies to cope with scalability and high-performance execution requirements. As a proof of concept we will describe how the framework is used to support linking and contextualization services in the context of the OpenAIRE infrastructure for scholarly communication
URL: http://www.sciencedirect.com/science/article/pii/S1877050914013763
DOI: 10.1016/j.procs.2014.10.016
Subject OpenAIRE infrastructure
Data processing system
Data mining
Text mining
Big data
H.3.7 Digital Libraries

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional