PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Altinkaya M., Kuruoglu E. E. Modeling enzymatic reactions via chemical Langevin-Levy equation. In: IEEE SIU - Signal Processing and Applications Conference (Fethiye, Turchia, 18-20 Aprile 2012). Proceedings, Ozyegin University (ed.). IEEE, 2012.
 
 
Abstract
(English)
Chemical Langevin Equation (CLE) describes a useful approximation in stochastic modeling of chemical reactions. CLE-based -leaping algoritm updates the quantities of every molecule in a reaction system with a period of , firing every reaction in the system so many times that the concentration of each molecule can be assumed to remain in the current concentration state. Substituting the Brownian motion in the CLE with a Levy flight, one might expect the CLE to converge more rapidly. This work shows that alpha (Levy)-stable increments can be used in -leaping, demonstrating it with the example of a detailed kinetic model describing the enzymatic transgalactosylation reaction during lactulose hydrolysis.
Abstract
(Italiano)
In Turco: Kimyasal Langevin Denklemi (KLD) kimyasal reaksiyonlar覺n stokastik modellemesi i蓾n yararl覺 bir yakla覺kl覺k betimlemektedir. KLD'ye dayal覺 -atlama algoritmas覺, sistemdeki her reaksiyonu her molekln mevcut konsantrasyonunu koruduu kabul edilebilecek ekilde 蔞k kez ateleyerek, reaksiyon sistemindeki her molekln miktar覺n覺 peryodu ile gncellemektedir. KLD'deki Brown hareketinin yerine Levy u蓰u konmas覺yla KLD'nin daha 蓷buk yak覺nsamas覺 beklenebilir. Bu 蓷l覺ma laktuloz hidrolizi s覺ras覺ndaki enzimatik transgalaktosilasyon reaksiyonunu betimleyen ayr覺nt覺l覺 kinetik model 顤nei zerinde -atlama'da Gauss yerine alfa (Levy)-kararl覺 art覺mlar覺n kullan覺labileceini g飉termektedir.
URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6204746&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DModeling+enzymatic+reactions+via+chemical+Langevin-Levy+equation
DOI: 10.1109/SIU.2012.6204746
Subject Chemical Langevin equation
Levy-Langevin equation
Alpha-stable distribution
Biochemical processes
G.3 PROBABILITY AND STATISTICS. Stochastic processes
G.3 PROBABILITY AND STATISTICS. Probabilistic algorithms (including Monte Carlo)
G.3 PROBABILITY AND STATISTICS. Markov processes
J.2 PHYSICAL SCIENCES AND ENGINEERING. Chemistry
82C31 Stochastic methods
60G51 Processes with independent increments; L憝y processes
60G50 Sums of independent random variables; random walks
92C45 Kinetics in biochemical problems


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional