PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
D'Acunto M., Moroni D., Salvetti O. Nanoscale biomolecular detection limit for gold nanoparticles based on near-infrared response. In: Advances in Optical Technologies, vol. 2012 article n. 278194. Hindawi, 2012.
 
 
Abstract
(English)
Gold nanoparticles have been widely used during the past few years in various technical and biomedical applications. In particular, the resonance optical properties of nanometer-sized particles have been employed to design biochips and biosensors used as analytical tools. The optical properties of nonfunctionalized gold nanoparticles and core-gold nanoshells play a crucial role for the design of biosensors where gold surface is used as a sensing component. Gold nanoparticles exhibit excellent optical tunability at visible and near-infrared frequencies leading to sharp peaks in their spectral extinction. In this paper, we study how the optical properties of gold nanoparticles and core-gold nanoshells are changed as a function of different sizes, shapes, composition, and biomolecular coating with characteristic shifts towards the near-infrared region. We show that the optical tenability can be carefully tailored for particle sizes falling in the range 100-150 nm. The results should improve the design of sensors working at the detection limit.
URL: http://www.hindawi.com/journals/aot/2012/278194/
DOI: 10.1155/2012/278194
Subject Infrared imaging
Nanoparticles
Nanodiagnostics
Biosensors
I.4.7 Feature Measurement


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional