PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Salerno E., Martinelli F., Tonazzini A. Nonlinear model identification and seethrough cancellation from recto-verso data. Internal note, 2011.
 
 
Abstract
(English)
The problem of seethrough cancellation in digital images of double-sided documents is addressed. Previous approaches to solve this problem from recto-verso pairs of grayscale data images show a number of drawbacks, ranging from errors due to an inadequate data model to excessive computational complexities. While satisfying the need to assume a nonlinear convolutional mixture model and to estimate its parameters along with the recto and verso patterns, we propose a simple and fast strategy to estimate the trasparency of the paper and the seethrough convolutional kernel, thus enabling an efficient correction of this distortion. Compared to other separation strategies, our choice is slightly more cumbersome since average background values must be estimated and a pure showthrough area must be isolated manually by the operator. Although the procedure cannot be fully automatic, however, it outperforms other restoration strategies, especially if based on linear instantaneous models.
Subject Document image processing
Seethrough cancellation
Nonlinear image models
I.7.5 Document analyis


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional