PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
D'Acunto M., Berrettini S., Danti S., Lisanti M., Pietrabissa A., Petrini M., Salvetti O. Inferential mining for reconstruction of 3D cell structures in atomic force microscopy imaging. In: IC3K 2011 - 3rd International Joint conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management (Parigi, 26-29 October 2011). Proceedings, pp. 348 - 353. INSTICC, 2011.
 
 
Abstract
(English)
Atomic Force Microscopy (AFM) is a fundamental tool for the investigation of a wide range of mechanical properties on nanoscale due to the contact interaction between the AFM tip and the sample surface. The focus of this paper is on an algorithm for the reconstruction of 3D stem-differentiated cell structures extracted by typical 2D surface AFM images. The AFM images resolution is limited by the tip-sample convolution due to the combined geometry of the probe tip and the pattern configuration of the sample. This limited resolution limits the accuracy of the correspondent 3D image. To drop unwanted effects, we adopt an inferential method for pre-processing single frame AFM image (low resolution image) building its super-resolution version. Therefore the 3D reconstruction is made on animal cells using a Markov Random Field approach for augmented voxels. The 3D reconstruction should improve unambiguous identification of cells structures. The computation method is fast and can be applied both to multi- and to single-frame images.
Abstract
(Italiano)
In questo lavoro si presenta una metodologia per la ricostruzione tridimensionale di immagini di cellule acquisite con un Microscopio a Forza Atomica. Sono introdotti sia un algoritmo per migliorare la risoluzione da singola immagine e quindi un metodo per ricostruire l'immagine finale eliminando possibili artefatti dovuti alla interazione tra la punta del microscopio e il campione biologico.
Subject Atomic Force Microscopy Imaging
Bayesian single frame high-resolution
I.3.3 Picture/Image Generation
62M40


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional