Istituto di Scienza e Tecnologie dell'Informazione     
Broccolo D., Nardini F. M., Perego R., Silvestri F. Refreshing models to provide timely query recommendations. In: IIR 2010 - Italian Information Retrieval Workshop (Padova, gennaio 2010). Abstract, vol. 560 pp. 97 - 98. Massimo Melucci, Stefano Mizzarro, Gabriella Pasi (eds.). CEUR Workshop Proceedings, 2010.
In this work we propose a comparative study of the effects of a continuous model update on the effectiveness of well-known query recommendation algorithms. In their original formulation, these algorithms use static (i.e. pre-computed) models to generate recommendations. We extend these algorithms to generate suggestions using: a static model (no updates), a model updated periodically, and a model continuously updating (i.e. each time a query is submitted). We assess the results by previously proposed evaluation metrics and we show that the use of periodical and continuous updates of the model used for recommending queries provides better recommendations.
URL: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-560/paper21.pdf
Subject Query recommender systems
Incremental algorithms
H.2.8 Database Management

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional