PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Kayabol K., Sanz J. L., Herranz D., Kuruoglu E. E., Salerno E. Astrophysical map reconstruction from convolutional mixtures. In: ADA 6 - Astronomical Data Analysis VI (Monastir, Tunisia, 3-7 May 2010). Abstract, pp. 31 - 31. Observatoire de la Côte d'Azur, 2010.
 
 
Abstract
(English)
We propose an astrophysical map reconstruction method for multi-channel blurred and noisy observations. We define the problem under Bayesian framework. We use the t-distribution to model the image gradients as a prior and resort the Monte Carlo simulation to estimate the maps and error both in the pixel and frequency domain. We test our method in five different sky patch located at varying positions from galactic plane to high altitude. We give the estimated maps along with the power spectrums and the numerical performance measures.
URL: http://www.aset.org.tn/conf/ADA6/conference_program.php
Subject Blind source separation
Convolutional mixtures
Cosmic Microwave Background
J.2 Physical sciences and engineering


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional