PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Ruggieri S., Pedreschi D., Turini F. Data mining for discrimination discovery. In: ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 4 (2) article n. 9. ACM, 2010.
 
 
Abstract
(English)
In the context of civil rights law, discrimination refers to unfair or unequal treatment of people based on membership to a category or a minority, without regard to individual merit. Discrimination in credit, mortgage, insurance, labor market, and education has been investigated by researchers in economics and human sciences. With the advent of automatic decision support systems, such as credit scoring systems, the ease of data collection opens several challenges to data analysts for the fight against discrimination. In this article, we introduce the problem of discovering discrimination through data mining in a dataset of historical decision records, taken by humans or by automatic systems. We formalize the processes of direct and indirect discrimination discovery by modelling protected-by-law groups and contexts where discrimination occurs in a classification rule based syntax. Basically, classification rules extracted from the dataset allow for unveiling contexts of unlawful discrimination, where the degree of burden over protected-by-law groups is formalized by an extension of the lift measure of a classification rule. In direct discrimination, the extracted rules can be directly mined in search of discriminatory contexts. In indirect discrimination, the mining process needs some background knowledge as a further input, for example, census data, that combined with the extracted rules might allow for unveiling contexts of discriminatory decisions. A strategy adopted for combining extracted classification rules with background knowledge is called an inference model. In this article, we propose two inference models and provide automatic procedures for their implementation. An empirical assessment of our results is provided on the German credit dataset and on the PKDD Discovery Challenge 1999 financial dataset.
URL: http://delivery.acm.org/10.1145/1760000/1754432/a9-ruggieri.pdf?ip=146.48.83.181&acc=ACTIVE%20SERVICE&CFID=86077462&CFTOKEN=45481728&__acm__=1329840978_cdc4b7c8b3cc63f40ad6de5f05691ef8
DOI: 10.1145/1754428.1754432
Subject Algorithms
Economics
Legal Aspects
H.2.8 Database Applications. Data mining


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional