PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Chiarugi F., Colantonio S., Emmanouilidou D., Martinelli M., Moroni D., Salvetti O. Decision support in heart failure through processing of electro- and echocardiograms. In: Artificial Intelligence in Medicine, vol. 50 pp. 95 - 104. Elsevier, 2010.
 
 
Abstract
(English)
Objective: Signal and imaging investigations are currently key components in the diagnosis, prognosis and follow up of heart diseases. Nowadays, the need for more efficient, cost-effective and personalised care has led to a renaissance of clinical decision support systems (CDSSs). The purpose of this paper is to present an effective way of achieving a high-level integration of signal and image processing methods in the general process of care, by means of a clinical decision support system, and to discuss the advantages of such an approach. From the wide range of heart diseases, heart failure, whose complexity best highlights the benefits of this integration, has been selected. Methods: After an analysis of users' needs and expectations, significant and suitably designed image and signal processing algorithms are introduced to objectively and reliably evaluate important features involved in decisional problems in the heart failure domain. Then, a CDSS is conceived so as to combine the domain knowledge with advanced analytical tools for data processing. In particular, the relevant and significant medical knowledge and experts' knowhow are formalised according to an ontological formalism, suitably augmented with a base of rules for inferential reasoning. Results: The proposed methods were tested and evaluated in the daily practice of the physicians operating at the Department of Cardiology, University Magna Graecia, Catanzaro, Italy, on a population of 79 patients. Different scenarios, involving decisional problems based on the analysis of biomedical signals and images, were considered. In these scenarios, after some training and 3 months of use, the CDSS was able to provide important and useful suggestions in routine workflows, by integrating the clinical parameters computed through the developed methods for echocardiographic image segmentation and the algorithms for electrocardiography processing. Conclusions: The CDSS allows the integration of signal and image processing algorithms into the general process of care. Feedback from end-users has been positive.
URL: http://www.sciencedirect.com/science/journal/09333657
DOI: 10.1016/j.artmed.2010.05.001
Subject Decision support systems
Ontologies
Rule-based reasoning
Electrocardiographic signal processing
Echocardiographic image analysis
Heart failure
H.4.2 Types of Systems
I.4.6 Segmentation
I.4.7 Feature Measurement
I.5.4 Pattern Recognition. Applications
J.3 Life and Medical Sciences


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional