Istituto di Scienza e Tecnologie dell'Informazione     
Dellepiane M., Callieri M., Ponchio F., Scopigno R. Mapping highly detailed colour information on extremely dense 3D models: the case of David's restoration. In: Eurographics 2007 Cultural Heritage Session (Prague, 3-7 September 2007). Proceedings, pp. 49 - 56. Eurographics Association, 2007.
The support of advanced Information Technology (IT) to preservation, restoration and documentation of Cultural Heritage is becoming a very important goal for the research community. Michelangelo's David was one of the first applications of 3D scanning technology on a highly popular work of art. The subsequent restoration campaign, started in 2002 and concluded in 2004, was also a milestone for the adoption of modern scientific analysis procedures and IT tools in the framework of a restoration process. One of the focuses in this restoration was also methodological, i.e. to plan and adopt innovative ways to document the restoration process. In this paper we present the results of an integration of different restoration data (2D and 3D datasets) which has been concluded recently. The recent evolution of HW and SW graphics technologies gave us the possibility to interactively visualize an extremely dense 3D model which incorporates the color information provided by two professional photographic campaigns, made before and after the restoration. Moreover, we present the results concerning the mapping, in this case on the 2D media, of the reliefs produced by restorers to assess and document the status of the marble surface before the restoration took place. This result could lead to new and fascinating applications of computer graphics for preservation, restoration and documentation of Cultural Heritage.
Subject Color
3D scanning
I.3.7 Three-Dimensional Graphics and Realism

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional