Istituto di Scienza e Tecnologie dell'Informazione     
Falchi F., Gennaro C., Zezula P. A content-addressable network for similarity search in metric spaces. Gianluca Moro, Sonia Bergamaschi, Sam Joseph, Jean-Henry Morin and Aris M. Ouksel (eds.). (Lecture Notes in Computer Science, vol. 4125). Berlin, Heidelberg: Springer, 2007.
In this paper we present a scalable and distributed access structure for similarity search in metric spaces. The approach is based on the Content-addressable Network (CAN) paradigm, which provides a Distributed Hash Table (DHT) abstraction over a Cartesian space. We have extended the CAN structure to support storage and retrieval of generic metric space objects. We use pivots for projecting objects of the metric space in an N-dimensional vector space, and exploit the CAN organization for distributing the objects among the computing nodes of the structure. We obtain a Peer-to-Peer network, called the MCAN, which is able to search metric space objects by means of the similarity range queries. Experiments conducted on our prototype system confirm full scalability of the approach.
URL: http://www.springerlink.com/content/w15v552514q0g660/fulltext.pdf
DOI: 10.1007/978-3-540-71661-7
Subject Content-Addressable Network
Similarity search
Metric Space
H.3.3 Information Search and Retrieval
H.3.4 Systems and Software

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional