PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Giannotti F., Manco G., Turini F. Specifying Mining Algorithms with Iterative User-Defined Aggregates. In: Ieee Transactions on Knowledge and Data Engineering, vol. 16 (10) pp. 1232 - 1246. IEEE, 2004.
 
 
Abstract
(English)
We present a way of exploiting domain knowledge in the design and implementation of data mining algorithms, with special attention to frequent patterns discovery, within a deductive framework. In our framework, domain knowledge is represented by way of deductive rules, and data mining algorithms are specified by means of iterative user-defined aggregates and implemented by means of user-defined predicates. This choice allows us to exploit the full expressive power of deductive rules without loosing in performance. Iterative user-defined aggregates have a fixed scheme, in which user-defined predicates are to be added. This feature allows the modularization of data mining algorithms, thus providing a way to integrate the proper domain knowledge exploitation in the right point. As a case study, the paper presents how user-defined aggregates can be exploited to specify and implement a version of the a priori algorithm. Some performance analyzes and comparisons are discussed in order to show the effectiveness of the approach.
Subject data mining
H.2.8 Database Applications. Data Mining


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional