PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Lavelli A., Magnini B., Sebastiani F. Building thematic lexical resources by term categorization. In: SIGIR 2002. The Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (Tampere, Finland, 11-15 August 2002). Proceedings, pp. 415 - 416. Micheline Beaulieu et al. (eds.). 2002.
 
 
Abstract
(English)
We discuss the automatic generation of thematic lexicons by means of term categorization, a novel task employing techniques from information retrieval (IR) and machine learning (ML). Specifically, we view the generation of such lexicons as an iterative process of learning previously unknown associations between terms and themes (i.e. disciplines, or fields of activity). The process is iterative, in that it generates, for each ci in a set C = {c1, . . . , cm} of themes, a sequence Li0 ⊆ Li 1 ⊆ . . . ⊆ Li n of lexicons, bootstrapping from an initial lexicon Li 0 and a set of text corpora Θ = {θ0, . . . , θn−1} given as input. The method is inspired by text categorization, the discipline concerned with labelling natural language texts with labels from a predefined set of themes, or categories. However, while text categorization deals with documents represented as vectors in a space of terms, term categorization deals (dually) with terms represented as vectors in a space of documents, and labels terms (instead of documents) with themes. As a learning device we adopt boosting, since (a) it has demonstrated state-of-the-art effectiveness in a variety of text categorization applications, and (b) it naturally allows for a form of “data cleaning”, thereby making the process of generating a thematic lexicon an iteration of generate-and-test steps.
Subject Thematic lexicons
Term categorization
H.3.3 Information Search and Retrieval
I.5.2 Design Methodology


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional