PUMA
Istituto di Scienze Marine     
Gamberi F., Marani M. GEOMORPHOLOGY AND SEDIMENTARY PROCESSES OF A MODERN CONFINED BRAIDED SUBMARINE CHANNEL BELT (STROMBOLI SLOPE VALLEY, SOUTHEASTERN TYRRHENIAN SEA). In: Journal of Sedimentary Research, vol. 81 (9) pp. 686 - 701. SEPM-SOC SEDIMENTARY GEOLOGY, 6128 EAST 38TH ST, STE 308, TULSA, OK 74135-5814 USA, 2011.
 
 
Abstract
(English)
The deposits of confined submarine channel belts are important reservoirs for oil and gas, and their study can furnish insight into the behavior of sediment gravity flows. Modern examples of confined channel belts can help in the interpretation of ancient successions in similar settings both on land and in the subsurface. A confined submarine channel belt develops within a bend of the Stromboli slope valley in the southeastern Tyrrhenian Sea. Within the 10-km-wide channel belt, the geometry of the main geomorphic elements and the distribution of smaller-scale seafloor features are reconstructed through geophysical data interpretation. The confined channel belt has a morphology similar to a braided river: a point bar is present in the inner bend side, a mid-channel bar develops in the axis of the channel belt, and a side bar is present in the outside of the bend. Small channels, on average 03 km wide, are present in between the bars. Flow stratification results in a coarser-grained seafloor in the channels as compared to the bars. The abundance of sediment waves points to bedload transport associated with concentrated density flows with large thickness and long duration. Hyperpycnal flows are their possible triggering mechanism since tributary canyons to the Stromboli valley, both in the Sicilian and Calabrian margins, have their heads close to the coastline. An autocyclic forcing mechanism can account for both depositional and erosional-bypass features within the channels. Fine-grained deposition in one of the channels results from its abandonment and backfilling following slumping from the wall bounding the confined channel belt. In the point bar, a megaflute erosional surface is formed by repeated flow scouring and represents the first stage of channel development. Successively, a channel evolves through lateral migration accompanied by erosion and bypass and by accretion of the adjacent bars. Finally, due to the establishment of a new channel in another portion of the channel belt the channel infills through vertically aggrading deposits.
DOI: 10.2110/jsr.2011.56
Subject NIGER DELTA SLOPE
DEEP-WATER
TURBIDITY-CURRENT
FORELAND BASIN
DEPOSITIONAL MODEL
SINUOUS CHANNELS


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional