PUMA
Istituto di Scienze Marine     
Brunelli D., Seyler M. Asthenospheric percolation of alkaline melts beneath the St. Paul region (Central Atlantic Ocean). In: Earth and Planetary Science Letters, vol. 289 (3-4) pp. 393 - 405. ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, 2010.
 
 
Abstract
(English)
Two peridotite suites collected by submersible in the equatorial Atlantic Ocean (Hekinian et al., 2000) were studied for textures, modes, and in situ major and trace element compositions in pyroxenes. Dive SP12 runs along the immersed flank of the St. Peter and Paul Rocks islets where amphibole-bearing ultramafic, mylonites enriched in alkalies and incompatible elements are exposed (Roden et al., 1984), whereas dive SP03 sampled a small intra-transform spreading centre situated about 370 km east of the St. Peter and Paul Rocks. Both suites are characterized by undeformed, coarse-grained granular textures typical of abyssal peridotites, derived from residual mantle after similar to 15% melting of a DMM source, starting in the garnet stability field. Trace element modelling, textures and lack of mineral zoning indicate that the residual peridotites were percolated, reacted and refertilized by similar to 2.6% partially aggregated melts in the uppermost level of the melting region. This relatively large amount of refertilization is in agreement with the cold and thick lithosphere inferred by previous studies. Freezing of trapped melts occurred as the peridotite entered the conductive layer, resulting in late-stage crystallization of olivine, clinopyroxene, spinel, +/-plagioclase. Chondrite-normalized REE patterns in clinopyroxenes from SP03 indicate that they last equilibrated with (ultra-) depleted partial melts. In contrast, REE concentrations in clinopyroxenes from SP12 display U and S shaped LREE-enriched patterns and the calculated compositions of the impregnating melts span the compositional range of the regional basalts, which vary from normal MORB to alkali basalt sometimes modified by chromatographic fractionation with no, or very limited, mineral reaction. Thus the mylonitic band forming the St. Peter and St. Paul Rocks ridge is not a fragment of subcontinental lithospheric mantle left behind during the opening of the Central Atlantic, nor the source of the alkaline basalts as previously suggested. Rather, dive SP12 sampled residual peridotites of normal MORB mantle that were located close to channels transporting alkali basalts. Reacted melts escaping from these channels, infiltrated, and locally equilibrated with, the peridotite matrix by ion exchange reactions. Relicts of the source of the alkaline basalts were not sampled but our study suggests that it was a component of the MORB mantle underlying the St. Paul region. (C) 2009 Elsevier B.V. All rights reserved.
DOI: 10.1016/j.epsl.2009.11.028
Subject alkaline MORB
melt percolation
abyssal peridotite
upper mantle
Central Atlantic Ocean


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional