PUMA
Istituto dei materiali per l'elettronica ed il magnetismo     
Ferrando R., Spadacini R., Tommei G. Jump rate and jump lengths in periodic systems with memory. In: Chemical Physics Letters, vol. 347 (4-6) pp. 487 - 492. Elsevier Science BN, 2001.
 
 
Abstract
(English)
The jump rate and the jump-length probability distribution (JLPD) are calculated in a periodic potential with exponentially decaying memory friction, solving the generalized Langevin equation (GLE) by the matrix-continued-fraction method (MCFM). It is shown that the jump rate, as a function of the memory decay parameter, presents a turnover point; below the turnover a significant percentage of long jumps appears even at sufficiently high static friction, where long jumps are strictly forbidden in the absence of memory.
DOI: 10.1016/S0009-2614(01)01070-3
Subject MARKOVIAN BROWNIAN-MOTION; ACTIVATED RATE-PROCESSES; SURFACE-DIFFUSION; LONG JUMPS; MOLECULAR-DYNAMICS; KRAMERS PROBLEM; PARTICLE; ADATOMS; CU(110); MODEL


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional