Istituto di Geoscienze e Georisorse     
Piccardo G., Müntener O., Zanetti A., Petike T. Ophiolitic peridotites of the Alpine-Apennine system: mantle processes and geodynamic relevance. In: International Geology Review, vol. 46 (12) pp. 1119 - 1159. Taylor and Francis, 2004.
Ophiolites exposed in the Alpine-Apennine mountain range represent the oceanic lithosphere of the Ligurian Tethys, a small oceanic basin separating the Europe and Adria plates during Mesozoic time. Most of the peridotites represent former subcontinental mantle which was: (a) isolated from the convective mantle at different times (from Proterozoic to Permian); and (b) accreted to the thermal lithosphere, where it cooled along a conductive geothermal gradient under spinel-peridotite facies conditions. These peridotites record two magmatic cycles: (1) early diffuse porous flow percolation and impregnation by single-melt increments, focused percolation in dunite channels, and intrusion of MORB-type melts; and (2) late intrusion and extrusion of magmas deriving from aggregated MORB liquids. The early lithosphere/asthenosphere interaction by melt percolation induced significant depletion/refertilization and heating of mantle peridotites, leading to the thermochemical erosion of lithospheric mantle. Plagioclase-bearing peridotites of the Alpine-Apennine ophiolites were derived from melt impregnation, whereas part of the depleted spinel peridotites resulted from reactive percolation of depleted melts, rather than being refractory residua after near-fractional melting. The presence of large areas of impregnated peridotites indicates that significant volumes of melts were trapped in the lithospheric mantle; subsequently, asthenospheric melts reached the surface, both intruding as MORB gabbroic bodies or extruding as MORB lava flows. Our results provide a mechanism to explain nonvolcanic and volcanic stages during rift evolution of the Ligurian Tethys, and might be equally applicable to modern slow-spreading ridges, which are characterized by variable magmatic (volcanic) and amagmatic (nonvolcanic) stages.
URL: http://https://www.tandfonline.com/loi/tigr20
Subject ocean-continent transition
nappes eastern switzerland
poor rifted margin
ligurian tethys
melt extraction
western Alps
mediterranean ophiolites

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional