Istituto di Geoscienze e Georisorse     
Perini G., Tepley III F., Davison J., Conticelli S. The origin of K-feldspar megacrysts hosted in alkaline potassic rocks from central Italy: a track for low-pressure processes in mafic magmas. In: Lithos, vol. 66 pp. 223 - 240. Elsevier, 2003.
In situ Sr-isotope and microchemical studies were used to determine the provenance of K-feldspar megacrysts hosted in mafic alkaline potassic, ultrapotassic rocks and in differentiated rocks from two nearby volcanic apparatus in central Italy. At Monte Cimino volcanic complex, mafic leucite-free ultrapotassic megacryst-bearing rocks of olivine latitic composition are associated with evolved latite and trachyte. Here, latites and trachytes straddle the sub-alkaline field. Age-corrected 87Sr/86Sr values (Sri) of the analysed Cimino olivine latites vary from 0.71330 and 0.71578 and strongly increase at constant Mg value. Latite and trachyte have lower Sri than olivine latites ranging between 0.71331 and 0.71361. Sri of K-feldspar megacrysts from olivine latites are between 0.71352 and 0.71397, but core and rim 87Sr/86Sr ratios within individual megacryst are indistinguishable. In all the mafic rocks, the megacrysts are not in isotopic equilibrium with the hosts. K-feldspar megacrysts from both the latite and trachyte have similar Sr-isotope compositions (Sri=0.713570.71401) to those in the olivine latites. However, Sri of megacryst in the trachyte vary significantly from core to rim (Sri from 0.71401 to 0.71383). As with the olivine latites, the K-feldspar megacrysts are not in isotopic equilibrium with bulk rock compositions of the latite or trachyte. At Vico volcano, megacryst-bearing rocks are mafic leucite-free potassic rocks, mafic leucite-bearing ultrapotassic rocks and old trachytic rocks. The mafic leucite-bearing and leucite-free rocks are a tephri-phonolite and an olivine latite, respectively. A megacryst in Vico trachyte is isotopically homogeneous (Sri CORE=0.71129, RIM=0.71128) and in equilibrium with the host rock (Sri bulk ROCK=0.71125). Sri of megacryst from tephri-phonolite is clearly not in isotopic equilibrium with its host (Sri bulk ROCK=0.71158), and it increases from core (Sri=0.71063) to rim (Sri=0.71077). A megacryst in Vico olivine latite is isotopically homogeneous (Sri CORE=0.71066, RIM=0.71065), but not in equilibrium with the host rock (Sri bulk ROCK=0.71013). The Sr isotope microdrilling technique reveals that Cimino megacrysts were crystallised in a Cimino trachytic magma and were subsequently incorporated by mixing/mingling processes in the latitic and olivine latitic melts. A model invoking the presence of a mafic sub-alkaline magma, which was mixed with the olivine latite, is proposed to justify the lack of simple geochemical mixing relation between Cimino trachytes and olivine latites. This magmatological model is able to explain the geochemical characteristics of Cimino olivine latites, otherwise ascribed to mantle heterogeneity. The similarity of core Sri of megacrysts hosted in Vico tephri-phonolite and olivine latite suggests that the K-feldspar megacrysts are co-genetic. Isotopic equilibrium between megacryst and Vico host trachyte indicates that the trachyte is the parent of this megacryst. On the contrary, the megacrysts hosted in tephri-phonolite and olivine latite do not derive from the old trachytic magma because no diffusion process may explain the core to rim Sr isotope increase of the xenocryst hosted in the tephri-phonolite. The megacrysts hosted in the Vico mafic rocks might derive from a trachytic melt similar in composition to the old Vico trachytes.
URL: http://https://www.journals.elsevier.com/lithos
Subject K-feldspar megacrysts
isotope stratigraphy
alkaline potassic magmas
Monte Cimino volcanic complex
Vico volcano
central Italy

Icona documento 1) Download Document PDF
Icona documento 2) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional