PUMA
Istituto di Fisiologia Clinica     
Bertuglia S., Giusti A. Microvascular oxygenation, oxidative stress, NO suppression and superoxide dismutase during postischemic reperfusion. In: American Journal of Physiology-Heart and Circulatory Physiology, vol. 285 pp. h1064 - h1071. american physiological society, 2003.
 
 
Abstract
(English)
Increased formation of reactive oxygen species (ROS) on reperfusion after ischemia underlies ischemia-reperfusion (I/R) damage. We measured, in real time, oxygen tension in both microvessels and tissue and oxidant stress during postischemic reperfusion in the hamster cheek pouch microcirculation. We measured PO2 by using phosphorescence quenching microscopy and ROS production in the systemic blood. We evaluated the effects of a nitric oxide synthase inhibitor (NG-monomethyl-L-arginine, L-NMMA) and SOD on the oxidative stress during reperfusion. Microvascular injury was assessed by measuring diameter change, the perfused capillary length (PCL), and leukocyte adhesion. During early reperfusion, arteriolar PO2 was significantly lower than baseline, whereas capillary PO2 varied between 7 and 0 mmHg. Arterial blood flow did not regain baseline values, whereas PO2 returned to baseline in arterioles and tissue after 30 min of reperfusion. During 5 and 15 min of reperfusion, ROS increased by 72 and 89% versus baseline, respectively, and declined to baseline after 30 min of reperfusion. Pretreatment with SOD maintained ROS at normal levels, increased arteriolar diameter, blood flow, and PCL, and decreased leukocyte adhesion (P < 0.05). L-NMMA decreased ROS only within 5 min of reperfusion, which increased significantly by 72% later during reperfusion. L-NMMA worsened leukocyte adhesion (P < 0.05). In conclusion, our results show that the early reperfusion is characterized by low PO2 linked to increased production of ROS. At early reperfusion both SOD and L-NMMA decreased ROS production, whereas only SOD reduced it during later reperfusion. We suggest that low-flow hypoxia profoundly affects vascular endothelial damage during reperfusion through changes in ROS and nitric oxide production.
URL: http://ajpheart.physiology.org/cgi/reprint/285/3/H1064
Subject oxygen tension
oxygen free radicals
capillaries
nitric oxide (NO)


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional