PUMA
Istituto di Scienza e Tecnologie dell'Informazione     
Favati P., Lotti G., Romani F. Peano kernel behaviour and error bounds for symmetric quadrature formulas. Internal note IEI-B4-35, 1993.
 
 
Abstract
(English)
For symmetric quadrature formulas, sharper error bounds are generated by a formulation of the Peano Kernel theory which fully exploits the symmetry properties. Formulas which use nodes outside the integration interval and/or derivative data are taken into consideration. We prove also that, for any symmetric formula, the Peano Kernels of a sufficiently large degree do not change sign in a suitable interval. This result allows giving a finite expansion of the truncation error for any regular integrand function.
Subject Numerical analysis
G.1.4 Quadrature and Numerical Differentiation


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional