PUMA
Istituto di Biofisica     
Fantozzi L., Ferrara R., Frontini F. P., Dini F. Dissolved gaseous mercury production in the dark: evidence for the fundamental role of bacteria in different types of Mediterranean water bodies. In: Science of the Total Environment, vol. 407 (2) pp. 917 - 924. Elsevier, 2009.
 
 
Abstract
(English)
It is well established that the dissolved gaseous mercury (DGM) production in waters is mainly driven by photochemical processes. The present paper provides evidence for a significant bacteria-mediated DGM production, occurring also under dark conditions in environmentally different types of coastal water bodies of the Mediterranean basin. The DGM production was laboratory determined in sea, lagoon-brackish and lake water samples, comparing the efficiency of the DGM production processes in darkness and in the light. This latter condition was established by exposing samples at solar radiation intensity in the Photosyntetical Active Radiation region (PAR) of 200 W m(-2). Mercury reduction rate in the dark was of the order of 2-4% of the DGM production in lightness, depending on the total mercury concentration in the water, rather than the bacterial abundance in it. Support for the active bacterial role in mercury reduction rate under dark conditions was provided by: 1) absence of significant DGM production in sterilized water samples (following filtration treatment or autoclaving), 2) restored DGM production efficiency, following re-inoculation into the same water samples of representatives of their bacterial community, previously isolated and separately cultured. Notwithstanding the low bacteria-mediated vs. the high photo-induced DGM production, whatever natural water body was considered, it is worth stressing the significant contribution of this organismal-mediated process to oceanic mercury evasion, since it occurs continuously along the entire water column throughout the 24 h of the day.
URL: http://www.sciencedirect.com/science/journal/00489697
DOI: 10.1016/j.scitotenv.2008.09.014
Subject Mercury
Dissolved gaseous mercury
Bacteria
Mediterranean basin


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional