Istituto di Biofisica     
Menconi G., Marangoni R. A Compression-Based Approach for Coding Sequences Identification. I. Application to Prokaryotic Genomes. In: Journal of Computational Biology, vol. 13 (8) pp. 1477 - 1488. Mary Ann Liebert, 2006.
Most of the gene prediction algorithms for prokaryotes are based on Hidden Markov Models or similar machine-learning approaches, which imply the optimization of a high number of parameters. The present paper presents a novel method for the classification of coding and non-coding regions in prokaryotic genomes, based on a suitably defined compression index of a DNA sequence. The main features of this new method are the non-parametric logic and the costruction of a dictionary of words extracted from the sequences. These dictionaries can be very useful to perform further analyses on the genomic sequences themselves. The proposed approach has been applied on some prokaryotic complete genomes, obtaining optimal scores of correctly recognized coding and non-coding regions. Several false-positive and false-negative cases have been investigated in detail, which have revealed that this approach can fail in the presence of highly structured coding regions (e.g., genes coding for modular proteins) or quasi-random non-coding regions (e.g., regions hosting non-functional fragments of copies of functional genes; regions hosting promoters or other protein-binding sequences). We perform an overall comparison with other gene-finder software, since at this step we are not interested in building another gene-finder system, but only in exploring the possibility of the suggested approach.
DOI: 10.1089/cmb.2006.13.1477
Subject Data compression
Coding sequences
Non-parametric identification

Icona documento 1) Download Document PDF

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional