Istituto di Matematica Applicata e Tecnologie Informatiche     
Brezzi F., Hughes T. J. R., Süli E. Variational approximation of flux in conforming finite element methods for elliptic partial differential equations: a model problem. Preprint ercim.cnr.ian//2001-1220, 2001.
We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.
Subject Finite element methods
Error estimates
Flux functionals

Icona documento 1) Download Document PS

Icona documento Open access Icona documento Restricted Icona documento Private


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional