PUMA
Istituto di Matematica Applicata e Tecnologie Informatiche     
Bertolazzi E., Manzini G. High-Order IMEX-RK Finite Volume Methods for Multidimensional Hyperbolic Systems. Preprint ercim.cnr.ian//2001-1254, 2001.
 
 
Abstract
(English)
In this paper we present a high-order accurate cell-centered finite volume method for the semi-implicit discretization of multidimensional hyperbolic systems in conservative form on unstructured grids. This method is based on a special splitting of the physical flux function into a convective and a non-convective part. The convective contribution to the global flux is treated implicitly by mimicking the upwinding of a scalar linear flux function while the rest of the flux is discretized in an explicit way. The spatial accuracy is ensured by allowing non-oscillatory polynomial reconstruction procedures, while the time accuracy is attained by adopting a Runge-Kutta stepping scheme. The method can be naturally considered in the framework of the textbf{IM}plicit-textbf{EX}plicit (IMEX) schemes and the properties of the resulting operators are analysed using the properties of M-matrices.
Subject Implicit-Explicit Runge-Kutta Methods, Finite Volume Methods


Icona documento 1) Download Document PDF


Icona documento Open access Icona documento Restricted Icona documento Private

 


Per ulteriori informazioni, contattare: Librarian http://puma.isti.cnr.it

Valid HTML 4.0 Transitional